

David Chappell

May 2011

INTRODUCING ODATA

DATA ACCESS FOR THE WEB, THE CLOUD,

MOBILE DEVICES, AND MORE

Sponsored by Microsoft Corporation

Copyright © 2011 Chappell & Associates

 2

Contents

Describing OData .. 3

The Problem: Accessing Diverse Data in a Common Way ..3

The Solution: What OData Provides ...3

How OData Works: Technology Basics ...5

Using OData: Example Scenarios ... 6

Accessing Application Data from Mobile Phones and Web Browsers ..6

Exposing Data from a Cloud Application ..8

Using Diverse Data Sources with Different BI Tools ...9

Examining OData: A Closer Look at the Technology and Its Implementation .. 10

The OData Data Model ...10

The OData Protocol ..12

Protocol Basics ...13

Serializing Data with Atom/AtomPub ..13

Serializing Data with JSON ..19

Issuing Queries ...20

A Perspective: OData in a SOA World ..21

OData Client Libraries ...22

OData Services ..22

Conclusion .. 23

For Further Reading .. 24

About the Author .. 24

 3

Describing OData

Our world is awash in data. Vast amounts exist today, and more is created every year. Yet data has value only if it

can be used, and it can be used only if it can be accessed by applications and the people who use them.

Allowing this kind of broad access to data is the goal of the Open Data Protocol, commonly called just OData. This

paper provides an introduction to OData, describing what it is and how it can be applied. The goal is to illustrate

why OData is important and how your organization might use it.

The Problem: Accessing Diverse Data in a Common Way
There are many possible sources of data. Applications collect and maintain information in databases, organizations

store data in the cloud, and many firms make a business out of selling data. And just as there are many data

sources, there are many possible clients: Web browsers, apps on mobile devices, business intelligence (BI) tools,

and more. How can this varied set of clients access these diverse data sources?

One solution is for every data source to define its own approach to exposing data. While this would work, it leads

to some ugly problems. First, it requires every client to contain unique code for each data source it will access, a

burden for the people who write those clients. Just as important, it requires the creators of each data source to

specify and implement their own approach to getting at their data, making each one reinvent this wheel. And with

custom solutions on both sidesΣ ǘƘŜǊŜΩǎ ƴƻ ǿŀȅ ǘƻ ŎǊŜŀǘŜ ŀƴ ŜŦŦŜŎǘƛǾŜ ǎŜǘ ƻŦ ǘƻƻƭǎ ǘƻ ƳŀƪŜ ƭƛŦŜ ŜŀǎƛŜǊ ŦƻǊ ǘƘŜ ǇŜƻǇƭŜ

who build clients and data sources.

Thinking about some typical problems illustrates why this approach ƛǎƴΩǘ ǘƘŜ ōŜǎǘ ǎƻƭǳǘƛƻƴ. Suppose a Web

application wishes to expose its data to apps on mobile phones, for instance. Without some common way to do

this, the Web application must implement its own idiosyncratic approach, forcing every client app developer that

needs its data to support this. Or think about the need to connect various BI tools with different data sources to

answer business questions. If every data source exposes data in a different way, analyzing that data with various

tools is hardτan analyst can only hope that her favorite tool supports the data access mechanism she needs to get

at a particular data source.

5ŜŦƛƴƛƴƎ ŀ ŎƻƳƳƻƴ ŀǇǇǊƻŀŎƘ ƳŀƪŜǎ ƳǳŎƘ ƳƻǊŜ ǎŜƴǎŜΦ !ƭƭ ǘƘŀǘΩǎ needed is agreement on a way to model data and

a protocol for accessing that dataτthe implementations can differ. And given the Web-oriented world we live in, it

would make sense to build this technology with existing Web standards as much as possible. This is exactly the

approach taken by OData.

The Solution: What OData Provides
OData defines an abstract data model and a protocol that let any client access information exposed by any data

source. Figure 1 shows some of the most important examples of clients and data sources, illustrating where OData

fits in the picture.

 4

Figure 1: Any OData client can access data provided by any OData data source.

As the figure illustrates, OData allows mixing and matching clients and data sources. Some of the most important

examples of data sources that support OData today are:

 Custom applications: Rather than creating its own mechanism to expose data, an application can instead use

OData. Facebook, Netflix, and eBay all expose some of their information via OData today, as do a number of

custom enterprise applications. To make this easier to do, OData libraries are available that let .NET

Framework and Java applications act as data sources.

 Cloud storage: OData is the built-ƛƴ Řŀǘŀ ŀŎŎŜǎǎ ǇǊƻǘƻŎƻƭ ŦƻǊ ǘŀōƭŜǎ ƛƴ aƛŎǊƻǎƻŦǘΩǎ ²ƛƴŘƻǿǎ !ȊǳǊŜΣ ŀƴŘ ƛǘΩǎ

supported for access to relational data in SQL Azure as well. ¦ǎƛƴƎ ŀǾŀƛƭŀōƭŜ h5ŀǘŀ ƭƛōǊŀǊƛŜǎΣ ƛǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ

to expose data from other cloud platforms, such as Amazon Web Services.

 Content management software: For example, SharePoint 2010 and Webnodes both have built-in support for

exposing information through OData.

 Windows Azure Marketplace DataMarket: This cloud-based service for discovering, purchasing, and accessing

commercially available datasets lets applications access those datasets through OData.

²ƘƛƭŜ ƛǘΩǎ Ǉossible to access an OData data source from an ordinary browserτthe protocol is based on HTTPτ

client applications usually rely on a client library. As Figure 1 shows, the options supported today include:

 Web browsers: JavaScript code running inside any popular Web browser, such as Internet Explorer or Firefox,

can access an OData data source. An OData client library is available for Silverlight applications as well, and

other rich Internet applications can also act as OData clients.

 5

 Mobile phones. OData client libraries are available today for Android, iOS (the operating system used by

iPhones and iPads), and Windows Phone 7.

 Business intelligence tools: Microsoft Excel provides a data analysis tool called PowerPivot that has built-in

support for OData. hǘƘŜǊ ŘŜǎƪǘƻǇ .L ǘƻƻƭǎ ŀƭǎƻ ǎǳǇǇƻǊǘ h5ŀǘŀ ǘƻŘŀȅΣ ǎǳŎƘ ŀǎ ¢ŀōƭŜŀǳ {ƻŦǘǿŀǊŜΩǎ ¢ŀōƭŜŀǳ

Desktop.

 Custom applications: Business logic running on servers can act as an OData client. Support is available today

for code created using the .NET Framework, Java, PHP, and other technologies.

The fundamental idea is that any OData client can access any OData data source. Rather than creating unique ways

to expose and access data, data sources and their clients can instead rely on the single solution that OData

provides.

OData was originally created by Microsoft. Yet while several of the examples in Figure 1 use Microsoft

ǘŜŎƘƴƻƭƻƎƛŜǎΣ h5ŀǘŀ ƛǎƴΩǘ ŀ aƛŎǊƻǎƻŦǘ-only technology. In fact, Microsoft has included OData under its Open

Specificatiƻƴ tǊƻƳƛǎŜΣ ƎǳŀǊŀƴǘŜŜƛƴƎ ǘƘŜ ǇǊƻǘƻŎƻƭΩǎ ƭƻƴƎ-term availability for othersΦ ²ƘƛƭŜ ƳǳŎƘ ƻŦ ǘƻŘŀȅΩǎ h5ŀǘŀ

support is provided by Microsoft, ƛǘΩǎ more accurate to view OData as a general purpose data access technology

that can be used with many languages and many platforms.

How OData Works: Technology Basics
Providing a way for all kinds of clients to access all kinds of data is clearly a good thing. But wƘŀǘΩǎ ƴŜŜŘŜŘ ǘƻ ƳŀƪŜ

the idea work? Figure 2 shows the fundamental components of the OData technology family.

Figure 2: An OData service exposes data via the OData data model, which clients access with an OData client

library and the OData protocol.

The OData technology has four main parts:

 6

 The OData data model, which provides a generic way to organize and describe data. OData uses the Entity

5ŀǘŀ aƻŘŜƭ ό95aύΣ ǘƘŜ ǎŀƳŜ ŀǇǇǊƻŀŎƘ ǘƘŀǘΩǎ ǳǎŜŘ ōȅ aƛŎǊƻǎƻŦǘΩǎ 9ƴǘƛǘȅ CǊŀƳŜǿƻǊƪ (EF)
1
.

 The OData protocol, which lets a client make requests to and get responses from an OData service. At bottom,

the OData protocol is a set of RESTful interactionsτƛǘΩǎ Ƨǳǎǘ I¢¢tΦ ¢ƘƻǎŜ ƛƴǘŜǊŀŎǘƛƻƴǎ ƛƴŎƭǳŘŜ ǘƘŜ ǳǎǳŀƭ

create/read/update/delete (CRUD) operations, along with an OData-defined query language. Data sent by an

OData service can be represented on the wire today either in the XML-based format defined by

Atom/AtomPub or in JavaScript Object Notation (JSON).

 OData client libraries, which make it easier to create software that accesses data via the OData protocol.

Because OData relies on REST, using an OData-ǎǇŜŎƛŦƛŎ ŎƭƛŜƴǘ ƭƛōǊŀǊȅ ƛǎƴΩǘ ǎǘǊƛŎǘƭȅ ǊŜǉǳƛǊŜŘΦ .ǳǘ Ƴƻǎǘ h5ŀǘŀ

clients are applications, and so providing pre-built libraries for making OData requests and getting results

makes life simpler for the developers who create those applications.

 An OData service, which exposes an endpoint that allows access to data. This service implements the OData

protocol, and it also uses the abstractions of the OData data model to translate data between its underlying

form, which might be relational tables, SharePoint lists, or something else, into the format sent to the client.

Given this basic grasp of the OData ǘŜŎƘƴƻƭƻƎȅΣ ƛǘΩǎ possible to get a better sense of how it can be used. The best

way to do this is to look at some representative OData scenarios.

Using OData: Example Scenarios

Because OData is a general-purpose data access mechanism, it can be used in many different ways. This section

looks at three representative examples:

 Using OData to let mobile phones and Web browsers access a custom ŀǇǇƭƛŎŀǘƛƻƴΩǎ Řŀǘŀ.

 Letting application business logic use OData to access data exposed in the cloud.

 Allowing different BI tools to access diverse data sources through OData.

Accessing Application Data from Mobile Phones and Web Browsers
Users commonly access Web applications today through browsers. More and more, however, custom client

applications are used in place of browsers, especially on mobile devices. And when those client apps need to

ŀŎŎŜǎǎ ŀ ²Ŝō ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅΣ ǳǎƛƴƎ ǎǘŀƴŘŀǊŘ w9{¢ Ŏŀƭƭǎ Ŏŀƴ ǿƻǊƪ ǿŜƭƭΦ

But exposing data is harder. Without conventions for doing this, the creator of a Web application needs to create a

data model (since he probaōƭȅ ŘƻŜǎƴΩǘ ǿŀƴǘ ǘƻ ŜȄǇƻǎŜ his ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƛƴǘŜǊƴŀƭ ŘŀǘŀōŀǎŜ ǎǘǊǳŎǘǳǊŜ ǘƻ ǘƘŜ ǿƻǊƭŘύΣ ŀ

query language (to allow more than just simple reads), client libraries (to help diverse clients access the data), and

perhaps even tools (to help people create those clients).

1
 Even though the EDM was originally created as part of Entity Framework, OData borrows just the EDM modeling

aspect ƻŦ 9CΦ !ƴ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ h5ŀǘŀ ƛǎƴΩǘ ǊŜǉǳƛǊŜŘ ǘƻ ǳǎŜ 9C itself.

 7

If the application instead exposes its data through OData, life gets significantly simplerτthese things are already

available. Figure 3 illustrates this, showing how a custom application can use OData to expose its data both to

client apps on mobile phones and to Web browsers.

Figure 3: Mobile phones and Web browsers can use OData to access data exposed by a custom application.

In this example, data exposed by a Web application is accessed by client apps running on three different kinds of

mobile devices: Android, iPhone/ iPad, and Windows Phone 7. All three rely on OData client libraries made

ŀǾŀƛƭŀōƭŜ ōȅ aƛŎǊƻǎƻŦǘ ǘƻŘŀȅΣ ŀƴŘ ŀƭƭ ǘƘǊŜŜ ǎŜŜ ǘƘŜ ǎŀƳŜ Řŀǘŀ ƳƻŘŜƭ ŜȄǇƻǎŜŘ ōȅ ǘƘŜ ŎǳǎǘƻƳ ŀǇǇƭƛŎŀǘƛƻƴΩǎ h5ŀǘŀ

service. When requesting data via the OData protocol, each application can choose the format it wants that data

delivered in: XML with Atom/AtomPub or JSON.

Similarly, JavaScript code running in a Web browser uses another Microsoft-provided OData client library to access

ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŘŀǘŀΦ ¢ƘŜ Řŀǘŀ ƛǎ ŜȄǇƻǎŜŘ ǳǎƛƴƎ ǘƘŜ ǎŀƳŜ Řŀǘŀ ƳƻŘŜƭΣ ŀƴŘ ƛǘΩǎ ŀŎŎŜǎǎŜŘ Ǿƛŀ ǘƘŜ ǎŀƳŜ h5ŀǘŀ

protocol. Because the client is written in JavaScript, it probably elects to have data delivered to it in JSON (although

ǘƘƛǎ ƛǎƴΩǘ ǊŜǉǳƛǊŜŘύΦ AƴŘ ŀƭǘƘƻǳƎƘ ƛǘΩǎ ƴƻǘ ǎƘƻǿƴ ƛƴ ǘƘŜ ŦƛƎǳǊŜΣ aƛŎǊƻǎƻŦǘ ŀƭǎƻ ǇǊƻǾƛŘŜǎ ŀƴ h5ŀǘŀ ŎƭƛŜƴǘ ƭƛōǊŀǊȅ ŦƻǊ

Silverlight, supporting more functional browser applications.

LǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ǘƘŀǘ ƴƻǘƘƛƴƎ ŀōƻǳǘ h5ŀǘŀ ǊŜǉǳƛǊŜǎ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ŜȄǇƻǎŜ ǘƘŜ ǎǘǊǳŎǘǳǊe of its

internal data to clients. A client only sees the data model provided by the OData service, not the raw underlying

data. How the application maps its data to the OData data model is entirely up to the developer. If the underlying

data source is relational tables, for example, she might choose to reflect one or more tables directly in her

ŀǇǇƭƛŎŀǘƛƻƴΩǎ h5ŀǘŀ Řŀǘŀ ƳƻŘŜƭΣ ōǳǘ ǇŜǊƘŀǇǎ ƻƳƛǘ ǎƻƳŜ ƻŦ ŎƻƭǳƳƴǎ ƛƴ ǘƘŜǎŜ ǘŀōƭŜǎΦ !ƭǘŜǊƴŀǘƛǾŜƭȅΣ ǎƘŜ ƳƛƎƘǘ ŎǊŜŀǘŜ

an entirely different mapping where the OData data model is quite different from the underlying database.

 8

Whatever choice she makes, the OData service is free to interpose logic, such as rules for access control, between

ŎƭƛŜƴǘǎ ŀƴŘ ǘƘŀǘ ŘŀǘŀΦ ¦ǎƛƴƎ h5ŀǘŀ ƴŜŜŘƴΩǘ ƳŜŀƴ ǘƘŀǘ ŎƭƛŜƴǘǎ Ŏŀƴ ǎŜŜ ŘƛǊŜŎǘƭȅ ƛƴǘƻ ǘƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΩǎ

data.

LǘΩǎ ŀƭǎƻ ƛƳǇƻǊǘŀƴǘ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ǘƘŀǘ h5ŀǘŀ ƛǎ ŘŜǎƛƎƴŜŘ ǘƻ ǇǊƻǘŜŎǘ Řŀǘŀ ǎƻǳǊŎŜǎ ŦǊƻƳ ŎƭƛŜƴǘǎ ǘƘŀǘ ǊŜǉǳŜǎǘ ǘƻƻ

ƳǳŎƘ ŘŀǘŀΦ !ǎ ƭƻƴƎ ŀǎ ŎƭƛŜƴǘǎ ǊŜǉǳŜǎǘ ǎƳŀƭƭ ŀƳƻǳƴǘǎ ƻŦ ŘŀǘŀΣ ǘƘƛǎ ǇǊƻōƭŜƳ ŘƻŜǎƴΩǘ ŀǊƛǎŜΦ .ǳǘ ǎǳǇǇƻǎŜ ŀ Ŏƭient

requests all of the data in, say, a relational tableτwhat then? Is the OData service obligated to return everything

in a single response? The answer is no. Instead, a service is free to define its own page size, then return data a

page at a time. It can also provide a continuation indicator, letting the client request the next page. Because of

ǘƘƛǎΣ ŀ ŎƭƛŜƴǘ ǊŜǉǳŜǎǘ ŦƻǊ ŀ ƭŀǊƎŜ ŀƳƻǳƴǘ ƻŦ Řŀǘŀ ƴŜŜŘƴΩǘ ƻǾŜǊǿƘŜƭƳ ŀƴ h5ŀǘŀ ǎŜǊǾƛŎŜΩǎ ŀōƛƭƛǘȅ ǘƻ ŘŜŀƭ ǿƛǘƘ ƛǘΦ

Exposing Data from a Cloud Application
Cloud pƭŀǘŦƻǊƳǎ ŀǊŜ ŎƘŀƴƎƛƴƎ Ƙƻǿ ǿŜ ōǳƛƭŘ ŀƴŘ Ǌǳƴ ŀǇǇƭƛŎŀǘƛƻƴǎΦ ¢ƘŜȅΩǊŜ ŀƭǎƻ ŎƘŀƴƎƛƴƎ Ƙƻǿ ǿŜ ǎǘƻǊŜ ŀƴŘ ŀŎŎŜǎǎ

data. OData can play a role in these changes.

For example, think about a firm that sells products directly to customers via the Web. Suppose this firm also wishes

to let partner organizations access its product information from their own applications. To do this, the firm might

build an application and store its data on a cloud platform, such as the Windows Azure platform. This cloud

application will interact with users via browsers as usual. It can also use h5ŀǘŀ ǘƻ ŜȄǇƻǎŜ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ Řŀǘŀ to

software created by its partners. Figure 4 shows how this looks.

Figure 4: Diverse applications can use OData to access data stored in the cloud.

 9

As the figure shows, the Windows Azure application interacts with customers via browsers. This application might

be built using the .NET Framework or Java or something elseτWindows Azure supports several options. Whatever

ƭŀƴƎǳŀƎŜ ƛǘΩǎ ƛƴΣ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ Ŏŀƴ ŜȄǇƻǎŜ ŀƴ h5ŀǘŀ ǎŜǊǾƛŎŜ ǘƻ ǇǊƻǾƛŘŜ ŜȄǘŜǊƴŀƭ ŀŎŎŜǎǎ ǘƻ ƛǘǎ ŘŀǘŀΦ Lƴ ǘƘƛǎ example,

partners have created applications using PHP and Java, both of which have OData client libraries available. These

partner applications then interact with their own users through browsers or perhaps in some other way, accessing

the cloud data as needed. This approach, with an application providing a standard browser interface while also

exposing its data to other applications, is a common way to use OData today.

A partner application can also use OData to access information that the cloud application stores in Windows Azure

tables, as Figure 4 illustrates. OData is the native access proǘƻŎƻƭ ŦƻǊ ²ƛƴŘƻǿǎ !ȊǳǊŜ ǘŀōƭŜǎΣ ŀƴŘ ŀǎ ƭƻƴƎ ŀǎ ƛǘΩǎ

authorized to do so, another application can work directly with this information. LǘΩǎ ƳƻǊŜ ŎƻƳƳƻƴ ǘƻŘŀȅ ǘƻ

expose an OData service from an application rather than directly from a data store, but both approaches are

possible.

Using Diverse Data Sources with Different BI Tools
Business intelligence, analyzing information to extract meaning, is an important part of how people use data.

Analyzing data first requires accessing data, and given the multiplicity of BI tools and data sources in use today, this

is a non-trivial problem. Different analysts prefer different tools, and data is kept in different forms in different

places. MǳŎƘ ƻŦ ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ǳǎŜful data is likely to be wrapped inside custom and packaged applications, for

example, while many organizations also keep useful business data in SharePoint lists. Another possible source for

data is aƛŎǊƻǎƻŦǘΩǎ ²ƛƴŘƻǿǎ !ȊǳǊŜ aŀǊƪŜǘǇƭŀŎŜ 5ŀǘŀaŀǊƪŜǘ, which provides a cloud-based way to purchase and

access commercial data sets.

Suppose an analyst wishes to combine data from these various sources. Maybe a retailer is trying to decide where

to locate a new store, for example, and so needs to look at sales information from one of its custom applications,

customer survey data stored in SharePoint lists, and demographic data acquired from DataMarket. Or perhaps

analysts in a local government wish ǘƻ ŀŎŎŜǎǎ ŜƳŜǊƎŜƴŎȅ Ŏŀƭƭ Řŀǘŀ ŦǊƻƳ ǘƘŜ ŎƛǘȅΩǎ ŎǳǎǘƻƳ Ŏŀƭƭ ŎŜƴǘŜǊ ŀǇǇƭƛŎŀǘƛƻƴΣ

police reports stored in SharePoint, and national crime statistics available through DataMarket. Lƴ ōƻǘƘ ŎŀǎŜǎΣ ƛǘΩǎ

entirely possible that different analysts wish to use different tools to work with this data.

The problem is clear: How can we connect multiple clients to multiple data sources? Without a common approach

to exposing and accessing data, the situation is bleak. OData can help, as Figure 5 shows.

 10

Figure 5: Different BI tools can use OData to access data stored in different formats across different data

sources.

In this example, two different analysts using different BI toolsτTableau Desktop and Microsoft ExcelΩǎ

PowerPivotτare accessing data from the three data sources just listed: SharePoint 2010 lists, a custom

application, and Windows Azure Marketplace DataMarket. All of these technologies can use OData today, and so

making these connections is straightforward. Because clients and data sources speak the common language of

OData, hooking them together gets simpler, and analysts can begin working with new data more rapidly.

Examining OData: A Closer Look at the Technology and Its Implementation

OData began life as a Microsoft project code-named Astoria. The technology was then renamed ADO.NET Data

Services before its protocol and data model were separated out and became OData. (The parts of ADO.NET Data

Services that were focused on the Windows implementation of OData are now known as WCF Data Services.)

Whatever the name, though, the fundamental technology of OData has remained the same.

!ǎ ŘŜǎŎǊƛōŜŘ ŜŀǊƭƛŜǊΣ ƛǘΩǎ ǳǎŜŦǳƭ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ the OData world in four parts: the data model, the protocol, the

client libraries, and the OData service itself. This section describes all four, beginning with the data model.

The OData Data Model
To provide a general way for any client to access any kind of information, OData provides an abstract data model.

Yet data comes in many different forms, and it can be related to other data in a variety of ways. How can a single

data model encompass this diversity?

h5ŀǘŀΩǎ ŀƴǎǿŜǊ ƛǎ ǘƘŜ 9ƴǘƛǘȅ 5ŀǘŀ aƻŘŜƭΦ In many ways a modern take on the familiar entity-relationship model,

the EDM models data as entities and associations among those entities. This general approach lets the EDMτand

 11

thus ODataτwork with pretty much any kind of data. Figure 6 illustrates the fundamentals of how the EDM

describes data.

Figure 6: The Entity Data Model describes data as entities connected by associations.

As the figure shows, associations between entities can be one-to-one or many-to-one. An association can also be

unidirectional, as are most of those shown here, or bi-directional, like the association in the upper right. Whatever

ǎǘǊǳŎǘǳǊŜ ƛǎ ǳǎŜŘΣ ƛǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ǘƘŀǘ ǘƘŜ 95a ŘŜǎŎǊƛōŜǎ ƻƴƭȅ ǘƘŜ ƭƻƎƛŎŀƭ ǎǘǊǳŎǘǳǊŜ ƻŦ ŘŀǘŀΦ Iƻǿ ǘƘŀǘ

data is stored physically is irrelevant.

The data exposed by an OData service can come from many sources, and how this data is mapped to the EDM is up

to the creator of that service. For example, an OData service exposing relational data might represent each table as

an entity, with foreign key relationships among thosŜ ǘŀōƭŜǎ ƳƻŘŜƭŜŘ ŀǎ ŀǎǎƻŎƛŀǘƛƻƴǎΦ ! ǎŜǊǾƛŎŜ ǘƘŀǘΩǎ ŜȄǇƻǎƛƴƎ

data directly from a set of Java objects might model each object as an entity and the connections among objects as

associations.

TƘŜǊŜΩǎ ƳƻǊŜ ǘƻ ǘƘŜ 95a ǘƘŀƴ Ƨǳǎǘ ŜƴǘƛǘƛŜǎ ŀƴŘ ŀǎǎƻŎƛŀǘƛƻƴǎ, however. Figure 7 shows a more complete picture.

 12

Figure 7: In the EDM, an entity container holds entity sets, while each entity has one or more properties.

As the figure shows, the EDM organizes entities into a simple hierarchy. Each entity is part of an entity set, and

each entity set belongs to an entity container. Entities, each of which is of some entity type, also have a simple

structure: They contain properties, each of which contains data that this entity holds. To describe the data in

properties, the EDM defines a variety of data types, such as String, Boolean, Int16, Int32, Binary, and DateTime.

Special properties called navigation properties represent associationsτthey implement connections between

entities. In the example show here, for example, each entity set might be a table in a relational database, with

each entity a row in that table. Navigation properties represent relationships between rows, such as those

expressed by foreign keys.

Having a general model for all kinds of data is essential. Without it, OData ŎƻǳƭŘƴΩǘ ƎƛǾŜ ŎƭƛŜƴǘǎ ŀ ŎƻƳƳƻƴ ǾƛŜǿ ƻŦ

diverse data sourcesΦ ¦ǎŜŦǳƭ ŀǎ ƛǘ ƛǎΣ ǘƘƻǳƎƘΣ ǘƘŜ 95a ƛǎƴΩǘ ŜƴƻǳƎƘΦ ¢ƘŜǊŜ Ƴǳǎǘ ŀƭǎƻ ōŜ a way for an OData client to

send requests to an OData service, then get data back. The OData protocol defines how to do this, as described

next.

The OData Protocol
The OData protocol is based on REST; at bottom, ƛǘΩǎ Ƨǳǎǘ I¢¢tΦ .ǳǘ I¢¢t ŀƭƻƴŜ ƛǎƴΩǘ ŜƴƻǳƎƘΦ h5ŀǘŀ ŀƭǎƻ ŘŜŦƛƴŜǎ

how data modeled using the EDM should look on the wire, how to form queries against that data, and more. This

section takes a closer look at these aspects of the technology.

 13

Protocol Basics

An OData client accesses data provided by an OData service using standard HTTP. The OData protocol largely

follows the conventions defined by REST, which define how HTTP verbs are used. The most important of these

verbs are:

 GET: Reads data from one or more entities.

 PUT: Updates an existing entity, replacing all of its properties.

 MERGE: Updates an existing entity, but replaces only specified properties
2
.

 POST: Creates a new entity.

 DELETE: Removes an entity.

As usual with REST, each HTTP request is sent to a specific URI, identifying some point in the target OData ǎŜǊǾƛŎŜΩǎ

data model. For example, the root URI for a service might be www.fabrikam.com/example .

A client can typically learn about the data model used by an OData service by issuing a GET on ŀ ǎŜǊǾƛŎŜΩǎ root URI

ǿƛǘƘ άϷƳŜǘŀŘŀǘŀέ ŀǇǇŜƴŘŜŘ ǘƻ ƛǘΦ CƻǊ ŜȄŀƳǇƭŜΣ ƛǎǎǳƛƴƎ ǘƘŜ I¢¢t ǊŜǉǳŜǎǘ

http://GET www.fabrikam.com/e xample /$metadata

returns a description of the EDM schema for the data model exposed by this OData service. The returned schema

is expressed in an XML-based format called the conceptual schema definition language (CSDL), and an OData client

can examine it to see what the ǎŜǊǾƛŎŜΩǎ Řŀǘŀ ƳƻŘŜƭ ƭƻƻƪǎ ƭƛƪŜΦ

Like most data access protocols, OData must handle authentication: How does a client prove its identity to an

OData service? The answer is that since OData is based on REST, any authentication scheme that works in a

RESTful context will work here. For straightforward interactions, communication between OData clients and

services can rely on HTTP Basic Authentication over SSL. For more complex scenarios, Microsoft recommends using

OAuth 2.

Serializing Data with Atom/AtomPub

The purpose of the OData protocol is to let a client get data from an OData service. While the EDM defines an

abstract data model, it says nothing about how that data should be serialized, i.e., how it should be represented on

the wire. To fill this gap, OData today defines two serialization options: one using the XML-based Atom/AtomPub

and another using JSON. Both are worth looking at, beginning with the more commonly used Atom/AtomPub.

Atom, defined in RFC 4287, was originally created to describe information in blogs. It models a blog as a feed that

provides data to its readers. Each feed contains some number of entries, each of which holds the content of a

2
 a9wD9 ƛǎ ŀ ŎǳǎǘƻƳ I¢¢t ƳŜǘƘƻŘ ŀŘŘŜŘ ōȅ h5ŀǘŀΩǎ ŎǊŜŀǘƻǊǎΦ {ƛƴŎŜ ǘƘŜƴΣ wC/ ртуф Ƙŀǎ ŘŜŦƛƴŜŘ ǘƘŜ t!¢/H

method to provide the same functionality. The next version of OData will support both MERGE and PATCH.

 14

particular blog entry. AtomPub, officially known as the Atom Publishing Protocol, defines the notion of a service

that contains one or more collections. It also defines a set of RESTful interactions for accessing a service.

Taken together, Atom and AtomPub define a hierarchical model for data, as Figure 8 shows.

Figure 8: Atom and AtomPub together define an XML representation of data organized into a hierarchy.

In the Atom/AtomPub world, each collection is mapped to a feed. For a client to learn what blogs a particular site

makes available, it can ask the AtomPub service for the collections it contains, then access the feed that each

collection represents. The Atom and AtomPub specifications define how to represent this in XML, providing a

concrete way to send information across the network.

All of this raises an obvious question: What does a data model originally created for blogs have to do with the kind

of general purpose data access that OData allows? The answer is that from its humble blog origins, Atom/AtomPub

has grown into a widely used approach for working with a variety of data on the Web. (In fact, the creators of

AtomPub explicitly intended to design something that would be more broadly useful.) Given this popularity,

h5ŀǘŀΩǎ ŎǊŜŀǘƻǊǎ ŎƘƻǎŜ ǘƻ ŀŘƻǇǘ ƛǘ ŦƻǊ ŀƴ ·a[ǎŜǊƛŀƭƛzation format rather than create something new.

Like the EDM, Atom/AtomPub organizes information into a hierarchy: A service contains collections, each of which

corresponds to a feed, with each feed containing entries. Mapping the EDM to Atom/AtomPub is straightforward,

as Figure 9 shows.

 15

Figure 9: OData can use Atom/AtomPub to serialize EDM-defined data for transmission across the wire.

As the figure shows, an AtomPub service corresponds to an entity container in EDM. An AtomPub collection,

together with the Atom feed ƛǘΩǎ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ, is mapped to an EDM entity set. An Atom entry corresponds to

an EDM entity, while both hierarchies represent actual data values as properties. (Atom ŘƻŜǎƴΩǘ ŘŜŦƛƴŜ ǇǊƻǇŜǊǘƛŜǎΣ

howeverτthis is an extension added by OData.)

To get a concrete sense of how these abstractions are used, think about how an OData service might map data in a

relational database first into the EDM, then into Atom/AtomPub for transmission to a client. Figure 10 summarizes

the relationships.

 16

Figure 10: Relational data can be mapped first to the EDM, then to Atom/AtomPub for transmission to an OData

client.

Like the EDM and Atom/AtomPub, a relational database organizes data into a hierarchy. At the top is the database

itself, which contains tables. Each table holds some number of rows, while each row contains a set of column

values. Mapping this to the EDM and Atom/AtomPub, the database itself corresponds to an EDM entity container,

then to an AtomPub service. Each table becomes an EDM entity set, represented as an AtomPub collection and an

Atom feed. Each row in the table is an EDM entity and an Atom entry, while each column value becomes a

property in both EDM and Atom.

To understand how this actually looks on the wireΣ ƛǘΩǎ ǳǎŜŦǳƭ to walk through an example. Figure 11 shows a

simple relational database with two tables: Customers and Orders. Both tables have three columns, and both are

exposed by an OData service with the URI www.fabrikam.com/example . To begin accessing the data this

service provides, an OData client can issue an HTTP GET on this URI, as Figure 11 shows.

