z DavidChappell
& Associates

INTRODUCINSCA

DAVID CHAPPELL

JULY2007

COPRIGHT® 2007CHAPPELL & ASSOCB\TE

CONTENTS

SCA FUNABMENTALS.......eeiiieie et mr e ems e s sne e ne e e neeenes 3
Components and COMPOSILES.......cccuuiiiiiiiiiee e e e ee e s ie s e e e e e e e s e ss e e reaaeeesssannranarrraerrraeeeas 3
[0 4 F= 1] PP RPPRPPPRR 5

UNderstanding COMPONENTSciuuiieiiiiieeitt et ettt e st e e e ae b ene e s s b e e e s aabb e e e ans e e e asbenr e e e anbreeeenres 7
Services, References, and ProPertieS..........ceiiiiiiiiii ittt e e 8
=TT To [T L S TP PP OPPPRTRPPTP 9
Ly 9EFYLX SY {/! Q& WLGL..[L.2Y.LRYy.Sy.i. . .a2RS8f. ... 10

[1Y 1T T o TS Y= Vo = O 10
(D 1Y (T T oo T =T (=T (= o =T PSP 11
(1Y (T T o TN 0 01T 1[I 12
[1Y T T o TN = 11 o 11T PPN 12
Defining Other Aspects 0f & COMPONEINL.........ocuuiiiiiiiiiiee e 13
ConfigUIING & COMPONEIL.......utiiiiei ittt e st e s et b et e e sbbb et e e s annbr e e e e snbneeeens 14

Understanding COMPOSIEES.......ccciiuiiieiiiiee ittt st e et e e e sib e e e e s benre e e e nree e nees 15
WIrES @Nd PrOMOTION......ciiiriiiee ittt ettt e e s e e e e s e e e e s e e e e e e nnnneas 16
ConfiguriNg @ COMIPOSITE.cii i e e e e e e e e et et e e e e e s e s e eeaeaeaeeeeeereennenns 17

L0 £ [To TN o oY TP PPRRS PP 18

Putting the Pieces Together: lllustratiregn SCA Application............ccccoeeeeeiiiiiiici 19

IMPIEMENTING SCA. ...ttt h bt e e s bt e e s bt e e s am bbbt e e s abb e e e sabbeeesnneeas 20

1070 o [od 013 o o I TSRO PR 21

ACKNOWIEAGEIMENTS......ceiiiieie ittt bt e ea bt e e st bt e e sttt et e s sabe e e e aabeeeesnbbeeeeas 21

ADOUL TN AUTNOT. ... ettt e e e e e ire e s 22

SCAFUNDAMENTALS

What is an application®@ne way to think of it is a& setof softwarecomponents working togetheAll of
these components might bleuilt using the same technologgr they might use different technologies.
Theymightrun inside the sam®perating systenprocess, in different processes the samemachine, or
acrossgwo or moreconnectedmachinesHoweveran application isorganized two things ae required a
way to create components and a mechanismdescribinghow those components work together.

Service Component Architese (SCAdlefines a general approach to doibgth of these thingsNow
owned by OASIS, SCA was origirtathatedby a group of vendors, includirBEA, IBM, Oracle, SAP, and
others. TheSC4Aspecificationglefinehow to create components and how twombine those components
into completeapplications The componentg an SCA applicationight bebuilt with Java oother
languagesisingSCAdefinedprogramming modks, or they might be builusingother technologiessuch
as the Business Process Execution Language (@REt Spring Framewd. Whatevercomponent
technology is used, SCA definesoaxmonassembly mechanisto specifyhow those components are
combinedinto applications.

This overvievprovides ararchitecturalintroduction to SCA. Thgoalis to provide a bigpicture view of
what this technology offersjescribehow it works, andshowhow itsvarious pieceéit together.

COMPONENTS AND CONSPTES

Evey SCA application is built from one or more componeints simpleSCAapplication, the components
couldbe Java classesnning in a single procesandtheir interactionsmight rely onJavainterfaces
exposed byhose classedn a slightly more complecase, the Java classes in this application might be
running on different machines, relying some communicatiomechanism to interact with one another.
In a still more complex case, the application migbitaina fewcomponents implementedsJava
clases,others written in C++and still others defined usinBPELall spread across a group of machinkes
all of thesesituations the same fundamental issues exisftefe must bea way to define components and
to describe how theynteract And in an ineasingly serviceriented world, those interactions should be
modeled as services.

To do this, SCprovidesa generalizedlefinition of acomponent. It also specifidsow those components
can be combined inttarger structures calledcomposite. The figue below shows how a simple
compositebuilt from three SCA components might look.

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

DBMS
SCA

Acomposite is a logical construct: temponents can rum a single processn a singleeomputeror be
distributed across multiplprocesses on multipleomputers.A complete application might be
constructed from just one compositas inthe example shown her@®r it couldcombineseveral different
compositesThecomponents making upachcomposite migt all use the same technologyrt they might
be built using diffeent technologies either option is possible

As the figure shows, an S@pplicationcan beaccessedby software fromthe nonSCA world, such as

JavaServer Pad@SP)a Web services clienbr arything else Components in asCAapplicationcan also

acess datajustlike any other applicationOne optiorfor thisis to useService Data Objects (SDO)

perhaps in concert with a standard Java data access technology&uchM5 . / 2 NJ WK @ 99 pQa Wk
Persistence API (JPA). An SCA component can also usaRIBEsomething else directiithe SCA

& LIS OA F A O Iméntiateyndy paRicular@tibice.

AnSCA compositis typicallydescribed in an associated configuration fitege name of which ends in
.composite This file uses an XMilasedformat called theService Component Definition Langu#§€DL
O2YY2yf & LINEY 2 urdeScilie thécampdnéhithissémpositecontains andspecifyhow
they relate to one anotherfor the threecomponent composite shown abovéd basic structure ats
SCDL configurationmould look like this:

<composite name=" ExampleComposite " ... >
<component name="Component1">
</c0'r'r.1p0nent>
<component name="Component2">
</c0.r.np.0nent>
<component name="Component3">
</co.r.1.1ponent>

</composite>

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications

Components and composites are the fundamentahants of every SCA applicati®oth are contained
within a larger construct called@domain however, and sonderstanding SCAequires understanding
domains. This fundamental ideadescribed next.

DOMAINS

Animplicitt 8 adzYLJi A2y 2F { /! Qa ONXBI| (mdunstalla giouiofSEAT 3IABSy Sy
products, commonly known asintimes from a single vendor. Fexample, suppose a division of a large

firm choosesa particular compangs its SCA vendorhiE division igikely to installtheir chosen @Sy R 2 N &
SCAuntimeon a number ofnachines® ¢ KA & Aay Qi |y dzy NBlFaz2ylofS SELSOGI G
organizatims have typically purchased and installed J2EE prodTictseSCAuntimeswill likely be

managed by the same group of people, d@hi$ set of systemsg A G K I O2 Y Yuhtifne Sy R2 NR &
technology and common managemenprovidesthe primaryexample of a domain

Domains are an important concept in SCA. To see why, realize that even though SCA allows creating
RAAGNROdzGSR | LILX AOFdA2yas AG R2Say Qishotidritefadt. ARSTAY S K2
a result, the communication among these compotsewill be implemented differently by different

products.(As described in the sectidmplementing SCBelow, however, an SCA runtime can allow a

third party to create aontainerthat plugs into that runtime to support a particular technology, such as

BPEL.)

A domain can contaione or morecompositeseach of which hasomponents implemented in one or
more processes runningn one or more machineJhe figure below showan example of how this might
look.

SCA Domain

: | Process boundary Machine boundary

—-_

The domain shown here contains three qoosites and three computers. One composite, shown in the

upper part of the figure, consists of five components spread adtosg processes itwo different

machinesThe other two composites, shown in the lower part of the figure, run all of their corepisn

on a single machinalividing them into three separate processe®w communication happens between

0KSasS 02 YLRyYSy il pobcessKrieipriceds) oniniemachineycanNik defined differently

by each SCA vendaihatever choice is madepmposites are singlgendor constructs i KS& R2y Qi a Ll y
domain boundaries.

It might seem odd for a mukiendor specification to define a way to create distributed applications, yet

not definehow the components in those applications interact. To underdt#nis, realize that the

LINRYEFNE 3J2Ff 2F {/ 1 Qa ONBFI{I2NA ¢l & G2 Ftft26 LIR2NILFOACT:)
implementations. While creating composites that span dontaiarsd thus vendor boundariesmight

2yS RIF@& 0S5 LJtagokldof teirstvetsiom of S inGlting composites to a single

domain allows useful optimizationsn SCAR S @S { 2 LidSiydiliéantly sinfpléinside a domainfor

examplesince the complexities inherent in configuring mukindor appications can be avoided.

. SG R2y Qi Eded thagah BA@BoBdRsierunsin a singlevendor environment, it can still
communicatewith applications outside itewn domain Todo this an SCA componeganmake itself
accessibleisingan interopegable protocol such a#/eb servicesThe figure belovshows how this looks

SCA Domain
(Vendor X)

V4

Non-SCA e > Non-SCA

oy [T e

I

I SCA Domain

I (VendorY)

[

\ U

SO 1L D:ll :’ " " \D
Domain-defined :

Machine bounda
~"~ communication v

-2 Web services or other interoperable
communication

\

This example shows two SCA domafhg, OK A GK (g2 O02YLIziSNED® hyS R2YIFAY ¢
runtime, while the other use® S y’ R 2 NJruntiina. Al{of the communication beteen components

and composites within each domasdone in a vendospecificway { / ! R2Say Qi YI yRIGS K2g
interaction should happen. To communicate between domains, however, or witFS@h applications, a

component will typically allow access via B\&erviceor some other interoperable mechanisihm fact,

an SCA application communicating with another SCA application in a different domsithatee

application justikeanon{ / ! | LILJX AOF A2y T AlGa dzasS 2F {/! AayQid OGAahx

UNDERSTADINGCOMPONENTS

Components are the atoms from which an SCA application is created. Like atoms, SCA components
behave in consistent ways, and they can be assembled into different configurations. Understanding SCA
starts with understanding these fundamentgbplication building blocks.

In the parlance o8CAacomponent is an instance of amplementationthat has been appropriately

2y FAIANBRO ¢KS AYLE SYSyi(lGAzy Aa GKS O2RS GKIFaG I Ofdz
Java class or a BPELga@ss. The configuration, expressedsi@DLdefineshow that component interacts

with the outside worldIn theory, an SCA component could be implementddgipretty much any

technology.Yet whatever technology is used, every component relissaccommorset of abstractions,

including services, references, properties, and binditgspecify its interactions with the world outside

itself. This sectiomlescribesach of these.

SERVICES, REFERENARB PROPERTIES

Looked at from the outsidean SCA compongis a sinple thing. Whatever technologys used to creatd,
every component has the same fundamental parts, as shown below.

Component

) Service [] Property
, Reference

Eachcomponent typically implements somegusiness logiexposed agne or moreservicesA service
represented bya green ckvronin the figure providessome number obperationsthat can be accessed
08 (KS O zxhenpghSehiicessare described dependstbatechnoR 3 & slusetl i Q
implement the component. A Java component, for exampight describe its servicassing ordinary
Java interfaces, while a eponent implemented in BPEL would likely desciibservices using the Web
ServiceDescriptionLanguage (WSDL).

Along with providing services to its own clients, a component might also rely on services proyided
other componentsn its domainor by software outside itdomain To describe thisa component can
indicatethe servicest relies on usingeference. Shown as purple chevrorin the figure above, &h
reference defines aimterface containingperaionsthat this component needs to invoke.

These core ideas of services and references are worth lingering over fora mamer®a 6 S02YS 02YY2y
to use services to modelhat a component provides to itdients Rather than the distributed object

approachof the 1990s, theslightly lessoupledapproach of services now appears to be a betieoice

Explicitly defining referencelas become popular more recently, and it offers several advant&gesne

thing, 2 NI £ f & SELINBAAAY T Iscailgrhakefdayionsips aRdhd dBunks 8fy OA S

code clearer to developer§, 2 YS G KAy 3 { KI (i ®Plicit réfesencesilsolg S D@ YSKOF (1 Q&
sometimesknown asdependency injectiarThisopaquephraseactuallyhas a simple meaningnstead of

requiringa developer towrite code that locates theervicea componentepends on, the SQANntime

canlocate that servicéor her. Less code is good, as is the ability to move compomeots easilyfrom

one environment to another withat needing to change angdkup codethey contain.

Along with grvices and references component can also define one or m@meperties Each property
contains a value that can be read by that comporfeoin the SCDL configuratidile wheniiisQ
instantiated. For example, a compent might rely on a property to tell it whatart of the worldA G Q &
running in, letting it customize its behavior appropriately.

BINDINGS

Services and referencdst a component communicate with other softwarBy design, howevethey say
nothing abouthow that communication happen$pecifying this is the job bfndings The figure below
showswhere bindings fit into thesCApicture.

SCA
omponent

Non-SCA _/ ¥ SCA
v omponent
) Service Domain boundary
Domain-defined
T
) Reference communication
Explicit _-« Web services or other
binding interoperable communication

A binding specifies exactly how communication should be done between an SCA component and

something else. Dependingo g K+ i AGQa O2YYdzyAOFGAYy3 6AGKIE | 0O2YLRYS
explicitly specifiedindings As the figure shows,@mponentthat communicates with another

component inthe same domaineven one in anotheprocess or on another machineeed not hae any

explicitbindings specified. Instead, theuntime determineswhat bindings to usefreeing the developer

from this chore.

To communicate outside its domain, however, whether to a-8@A application or an SCA applamati

running in some otherdomath I O2Y LR Yy Sy iQa ONBF 2N Ydzad &aLISOATFe 2y S
communication. Each bindirdgfines a particular protocol that can be usedctimmunicate with this

service or referenceA single servicer referencecanhavemultiple bindings, allowingifferent remote

softwareto communicate withit in different ways.

Becausebindingsseparate how a component communicates from whatoes,theyletthec2 Y L2 Yy Sy (i Q&
business logibe largely divorcedrbm the detailsof communication This isa departurefrom the

approach taken bgldertechnologieswhich tended to mixhe two. Separating these independent

concernscan make life simpler fapplication designers and developers

AN EXAMPLE: $QQ { W! =!I /| heDELb 9 b ¢ a

Thefundamentalabstractions of an SG®mponent aresimple servicesreferencesproperties, and
(sometimes) bindings 6 A G N} OlA2ya | NByQil Sy2daAKIociates SOSNIP ¢ KSNB
components thaimplementthese abstractions.

Some existing technologies alreamatchwell with the abstractions of an SCA componeRbr example,

the Spring Frameworgrovides explicit support for services, references, and propersied, somapping

GKSasS Ayid2 {/! Q& aAiYA tBechusentlyidheéshatificatidndefiningiiodvtd I K G F 2 NB I NR
create SCAcomponents using Spring only a few pages lon§imilarly BPEL also provides some biilt

support for the absactions of an SCA componeBPED éonceptof partnerLinksfor examplecan be

mapped to both servies and referencedVhile extensions are required for using propertied, ! Qa

specificationfor creating components using BRAERQuite short,no more thana dozen pages.

Yet even thougBPEL and Sprirage viable optias for creating SCA componemgjther was created

with SCA in mindGiventhis, /K & y 234G RS&A3y LINBINI YYAYy3I Y2RSt FTNRY &
intended for building SCA componensK A & A a SEI O6f &Jadkdmiofent MREWS o6& {/ ! Qa
next sectiondescribeshow SCA componentan becreatedusing thisnew programming model.

. ST2NBE R2AY Zhinkikgh 82 dA i @axKeg2 NI RAE ONBIF(I2NE OK24S (2 Ayo!
component model for Jav@®ne importart motivationwasthe need for an explicitly serviemiented

approach.The current Java programming models for business logic, suUehtagrise JavaBeansJB

were defined for an earlier world where S NJBA OSa 6SNBYy Qi O@OASsSRonéch TFdzyRI YSyY
the Java EE 5 technologies were designedto i OK { / !cénpongnisBigo, bacause bindings

separate communication details from business logit SCAased Javaomponent modetan support

diverse communication stylés a commonwayFort2 6 K 2F (KS&aS NBlFaz2yasz dzaaAy3a {/!
model carsignificantly simplify davadS @St 2 LISNDRa f A TS o

DefiningService

Unlikethe older J2EEechnologiesSCR & pthgi@ming modetelies on annotations rather than API

calls. This approach make®ating a basic service quite easy. In fact, for a service with local clients,

nothing at all is required: an ordinary Java interface and class will do. A sériide i Q& | é@@8saaaAro0f S o0&
clients, however, must indicate this fact by marking an interfaith an appropriate annotation, as this

simple example shows

import org.osoa.sca.annotations.Remotable;

@Remotable
public interface AS

{
inta dd(int a, int b);
ints ubtract(int a, int b);

}

public interface MD

{
int nultiply(int a, int b);
intd i vide(int a, int b);

10

http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforBPEL_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf?version=1

}

public class Calculator implements AS, MD {
public int add(int a, int b) {

return a + b;

}

public int subtract(int a, int b) {
return a - b;

}

public int multiply(int a, int b) {
return a * b;

}
public int divide(int a, int b) {
if (b ==0){
throw new lllegalArgumentException();
}else {
return a/ b;
}
}

}

Thisexamplebegins by importingn annotation definitiorfrom a standad SCA packagé then useghis
annotation, @Remotable, to indicate that the service provided by ti#S interfacecanbe made

accessiblgo remote clients? KA f S dibK @diatneeds to be defined for this component in the
SCDL configuratipasdescribed laterthis annotationA & | f f G KI 4§ Q& NBle®&EMNBR Ay
runtime does everything required toakethe serviceaccessible to remote client$his simple

componentalso provides a second service tlexposeshe operations defined ithe MDinterface.

Because this service is accessible only by local clients, nothing extra is requitesb this interface has

no annotations

Both interfaces are implemented by tsameclass here given the unoriginal nant@alculator

. SOI dza SdefinédSnéaRindface marked wit@Remotable , the Add and Subtract methods
can be invoked by either local or remote clients. Mdtiply = andDivide methods, defined in an
interface without the@Remotable annotation, can be called only by clients rurgin the same process
as an instance of th€alculator class.

DefiningReference

Serviceslet a componentdescribewhat it providesto the world outside its boundariefeferences let a
component express what it need®m that world In{ / !J&drogranming model references are
specifiedusingthe @Reference annotation.For instance, gpose the example calculator just

described depends on a monitoring service to keep track of its usage. A reference to that service might be
defined like this

@Referenc e
protected MonitorService monitorService;

MonitorService is an interface, and sihe component can invoke methods in this interface in the
usual way. To invoke, sayusageCount method, the component could just call

11

iKS

monitorService. usageCount(x);

Yet thecomponent never needs to create an instarufea class that implements thénitorService
interface. Instead, theuntime automaticallylocates a component that provides this interface, then sets
the value ofmonitorService to point to that serviceRatherthan relyingon the developer to write
code that finds the servicéhis responsibilityis passedo the runtime. (Althoughthis approach isnost
oftencalledR SLISY RSy O& A ys8nSethies réfefrEd tdan@isionlof céngo)

Thedetails of low aruntime finds an instance of a servitieat satisfies this referencare domain

specific how it happens ideft up to the creator of each SG@Antime. Because of thifR 2 y Q (i th&tE LIS O i
references can be automatically linked to servipesvided bycomponents inanother SCAdomain

Within a singlevendorenvironment, howeverdza A y 3 NBFTFSNBy O0Sa OFy aAiAYLIX AFe |

Defining Properties

Properties are a simple idea, anddza A y 3 GKSY Ay WI @I Aa |faz2 aixyYLi So |

@Property
protect ed String region;

Likereferences and remote servicgsroperties ardédentified using an annotation@Property . This

annotation can be assigned to a field in a Java class or to a setter method, and in either case, it indicates

that avalue shoud be readfrom the SCDL configuratidile of the composite to which this component

belongs Properties can also be more compiett K S & y SjsRsiigleualuédStrings or integers or

other simple typesz KSG KSNJ 1 KS@ QNB &aAYLXE S 2 Nkade pravidiSgtavayko?2 6 S S NE
configure a componentiavalues thatareread at runtime.

Defining Bindings

As described earliehindings determinehow a component communicates with the worditsideits

domain Bindings can be assigned to servicestangferences, and each orgpecifiesa particular
protocol. To illustrate why bindings argseful, think of how applications use different protocols in Java
EES5 and its J2EE predecessors. As shown below, each protocol is provided by a distinct technology, so
ead one has its own application programming interfadsing SOABver HTTPfor exampletypically
meansbuilding on JAXVS(or JAXRPGn J2EE 1)4while using a queued messaging protocol requires the
Java Message Service (JM3)s forces developers tearn different APIs, perhaps with entirely different
programming models, to use different protocolisalso mixes business logic with communication code,

FAdzNIG KSNJ O2YLX AOFGAYy3 || RS@St2LISNRa fAFSo
Application
JAX-WS JMS EJB RMI
SOAP Queued messaging lorp Binary
protocol protocol

12

SCA takes a simpler approach. Rathantivrapping different protocols into distinct technologies with
different APIs, SCA allows each remotable setckeach referenceo specify the protocols it supports
using bindingsThe programming model seen by an application remains the sagwdless of which
protocol is usedas the figure below illustrates.

SCA
Component

Service Component Architecture

SOAP Queued messaging 1IOP Binary
protocol protocol, etc.
Web Sewices JMS Binding) EJB Session> Z_ SCA
Binding Bean Binding Binding

To be accessible via SO&Rr HTTPfor example, an SCA service uses\Wheb Servicebinding while

access via a queued messaging protocol useghthe bindingSimilarly, theeJB session bean binding

allows access to session beans using the Internet4@®B Protocol (IIOFvery SCAIntime also

provides arSCA bindingThe protocol thi® A Y RA y 3 dzifi&l ghoweey/ IQdieadd thdSdmding

isonly usedwhen a service and its client are batimning in the same domairgince every vendor wants

FLILIX AOFGA2ya o0dzAf G 2y Ala LINPRdAzOGAa G2 LISNF2NY | a 6S¢tf
most often use a binary protocat. KA & A ay Qi NXB |j dumNiBRsSTreek@hn&eifedant |y { / !
protocolsin different situations, all of which fall under thenbrellaof the SCA binding.

Version 1.0 ofte SCA Javamponentmodeldefinesno way for a developer to specify anbingdirectly

in Javalnstead, the bindings a service or reference relies on are either chosen byrttime, for intra-

domain communication 2 NJ & S SELJ A GaDL todfigurafichih f OBDYLIBNBPAaAQAY SEI YL
how a binding for O 2 Y L3&efV& ¢ ight bespecified

<binding.ws uri=" http://www.qwickbank.com/services/serviceA ">

This exampldinding element specifies two things: what protodble binding uses and where the
service can & accessed using this protocBhe.ws intheelemenQ & y I Y S the §fsRdf thésél S a
specifyinghe Web Services bindingheS f S Y Sy (at@iéute indicates the second, specifying the URL
at which the service can be found.L (4 Q& I f @@ muck2nioee fikelf f& a Web services binding

to usearelative URlrather than the absolute form shown heréther bindings can bspecifiedin a

similar way. Théinding.jms elementspecifies the JMS bindinfpr example, whiléinding. ejb
indicates theEJBsession bealbinding.

Defining Other Aspects of @omponent

Along withthe @Remotable attribute shown earlierthe SCA Javamponentmodel defines a number
of others. Among the most importamf theseare the following:

13

http://www.osoa.org/download/attachments/35/SCA_WebServiceBinding_V100.pdf?version=2
http://www.osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf?version=2
http://www.osoa.org/download/attachments/35/SCA_EJBSessionBeanBinding_V100.pdf?version=1

@OneWayspecifying that a operation returns no responsand soR 2 S ®lgcR Waitirg forone.

@Scope controlingi KS 02 YLy Sy (i Q& AcerBporentc@ribe @avéidatbrigl Y LI ST |
which means that it maintains its state between method callsstateless maintaining nothing
between calls

@Callback , allowing a callback intera to be defined. Thisupports two-way communication
between components using what SCA daildirectionalinterfaces.

Not all attributes are usable with all bindings. Fustance the @ Scopeattribute with the conversational
option can only be used witprotocolsthat can pass session informatisych as a SOAP bindinging
WSReliableMessaging. As widmy programming environmenSCA developers must understand their
technology to use it correctly.

CONFIGURING COMPONENT

2 KSGKSNI AGQayHYKW SNAYy WERI dzDR YLIR2 Y Sy (,eveigSREt 2 NJ | y2 i KSNJ
componentrelieson information in theSCDL configuratidile associated with the composite it belongs

to. As shown earlieach component is defined using themponent element, andcomponeris are

contained within a&composite element.Exactly what must be specified farcomponent depends on

GKSOGKSNI AGQa RSTFAYAY3 O2YYdzyAOF A2y 6AGK 2GKSNJ O2 YL\
outside its domainln the simple (and probably more mmnon) casewherea component interactsnly

with other components in the same domain, étemponent elementcan be quitestraightforward For

the Calculator class shown earlier, that elementight look like this:

<component name="Component1">
<implemen tation.java class="services.examples.Calculator"/>
<property nhame="region">
Europe
</property>
</component>

Like allcomponent elements, this one assigns the component a name and provides a wrapper for other
elements. The first of thesémplem entation .java , indicates that this component is implemented

using the SCA Java component model, then specifies the Java class in which this implementation can be
found. Thesecondelement,property , defines a value fahe 02 Y LJ2 y Sy (i Qviihateubk®#udSsNI & &
provided is read into theegion field in this component when it begins executitNpte that neither

services nor referencdsr this componenneed be described herénstead the runtime can discover

these thingdy introspection i K S NBequiremérto list them explicitly. And because all

communication is happening within the same domain, thietime can choosevhichbindingsto use

obviating he need to specify them here

If the Calculator classis communicatingutside its domainhowever,things get slightly more
complex. Suppose, for instance, that bothriggnotableservice and its referenceanbe connectedto
software outsidethis O 2 Y LJ2 ydSnyfain Qriithis caseéhe component element forthe classmight look
like this

<component name= "Componentl">
<implementation.java class="services.examples.Calculator"/>

14

<service name="A S">
<binding.ws uri=" http://www.qwickbank.com/services/serviceA ">
</service>
<reference name=" Monitor Service ">
<binding.ws uri =" http://mww .q wickbank.com/services/serviceM ">
</reference>
<property name="region">
Europe
</property>
</component>

Just as beforeahe 02 Y LI2 ¥ Sy (i Q degRSvitt@mMpleneénition.java element

indicating what technology wsaused to implementhe component and where this implementation can be
found. It also ends with th@rop erty element as before. In between, h@wer, are expliciservice
andreference elements forthe remotableservice andhe reference this component defines. Each of
thesespecifies theNeb services binding, complete with a URkcause the component is communicating

with software outside its domairthe runtime Ol y QG OK22 &S | 60AYRAYy3Id LyaidSIRZ

l.j

specifieghat an interoperable binding shouldbeusédb 2 S G KIF G GKAa AayQd NBI dzi NBR
f20Ff aSNWAOS:TI aiyO0S AilQa 2yfiLal Qatha@d8antdetoS TNRY 6A0KAY

generateWSDL interfacgfrom the Java interfacg fix up the service to be callable via SOAP, and do
everything else required téet this componentcommunicate viaVeb services.

As described herehe Calculatocomponentisimplementedug y3 { /! Q& WI @+ 02 YLR Yy Sy
other technologywere used to implementt, however, its definition in theSCID configurations 2 dzft Ry Qi
change muchlfthis componentwvere implemented in BPEL, for examm@ad communicated only with

other components in its own domaiits component element might now look like this:

<component name="Componentl">

<implementation. bpel process ="ExampleProcess "/>
<property name="region">
Europe
</property>
</component>
Rather than thémplementation.java element shown earlier, a BPEL component uses the
implementation.bpel element, naming a BPEL process rather than a Jasa. dNothing else need

change. While theuntimeY dza i 6 SKI @S RAFFSNBydGte (2 SESOdziS (KAa&
component definition remains the same, and so only small changes are requiredSCie configuration
file.

Similarly, a component bittusing the Spring Framework would specify tmgplementation.spring

element, while one builtdzd A y 3 CH+ tomgbéent modevould usei mplementation.cpp . An

entire composite can also act as a component in another composite, an option that relies on the
implementation.composite element. This approach allows composites to be nested, regardless of
the technologies from which their componerdse built.

UNDERSTANDINGOMPOSITES

If components are the atoms of S@Ren composites are the molecules. Composites group components
into useful combinations, which can themselves be further combifiéis buildingblock approach to

15

http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModel_Cpp-V100.pdf?version=2

creating applicatias has some obvioyduses For example, viding a weHdefined set of abstractions
for components can help people who create applications think more clearly abouthase& applications
should be designe&eepng these abstractions consistent acrosedtent technologieslsomakes
buildingapplications using different languages anohtimeseasier Recall, too, that theomponentsn a
compositemight run in the sam@rocess in differentprocesse®n a single machine, or in different
processe®n diferent macih y Sa ® Ly | f f usefd to hakeSsant: wayltoxd&ptoytheleriti®@ &
application as a unitAnd sincecomponents provide discrete, welkefined servicesagraphicatool could
allowassembling or rassembling various components asded to address a particular problem. Doing
thiscanYl { S | RS @cadie? ad8tiniughi evén/aios less technically adept people to create
applications by assembling existing components.

Achieving these goatequiresdefininghow componentgelate to one another within a composite
relationships described ifi / ! a&ambly model specificatioihis sectioriakes a closer look at hoan
SCAcomposite isassembled

WIRES AND PROMOTION

' & dzadzZl £ = A G Qa pidageSThalfifurelb@ow ShowsN# compborierits, d¢actvith some
combination of services and resourcédl. three are part of the same composite.

I Sservice N Wire

, Reference - ™~ Promotion

As the figure shows, a reference in az@mponent is connected to a service in another component using

awire. A wire is an abstract representation thfe relationship between a reference and sorservice that

meets the needs ahat reference. Exactly what kind of communication a wire provicsvary it

depends on the specifiuntimed K (4 Q&4 dzaSRX ¢KI G o0AyRAy3a AnNBE &LISOATFAS
sincethe components in a composite might run entirely within a single process, across processes on a

single machine, or be spread acrgsscesses on different machinesires can represenelationshipsn

all of these cases

16

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1

Just as components expose servi@spmpositecanalsoexposeone or moreservice. These services are
actuallyimplementedby componenswithin the composite. Tanake themvisible to the outside world,

G KS 02 YL a éaiipfoatethodeIeivide2ImMithis example, service A implemented by
Component 1 is promoted to ke service provided by the compositself. Similarly, zero, one, or more
references definedby components can be promoted to be visible outside the compokiéee, both
references T and U are promoted to the composite level.

CONFIGURINS COMPOSITE

All of the relationships in a composite are expressed inSOL configuratichA f S & ligyNBE Qa | &
simplified example ofiow this filemight lookfor the scenarioshown above:

<composite name="ThreeComponents" autowire="true" >

<component name="Componentl">
<implementation. bpel process ="Processl "/>
</component>

<component name ="Component2">
<implementation.java class="services.examples. class2 "/>
</component>

<component name="Component3">
<implementation.java class="services.examples. class3 "/>
</component>

<service name=AA0 promote=fAComponent1l/ A0
<binding.ws/>
<service />

<reference name=" TO pr o moQompoiient2/To / >
<reference name="U0 promote=fAComponent 3/ Uo0/ >

</composite>

Like allISCDL configurationthis one wraps its contents amcomposite element. In the example shown

here, this eler Sy Auibdire attribute is set to true. This indicates that the SQAtime should

automatically attempt to connect the services and references defined by the components in this

composite. To dehis, theruntime looks formatches betweenhe referencesand servicegxposed by

GKAE O2YLRaArAlSQa O02YLRySyiao cierfacda rdfereice ieddikes, | a SNIJA
allow usinga compatiblebindingg ' YR LISNKI| LJA Y2NB o ! f K2dzZa3K AdGQa y2i
defineexplicitwires betveen commnents usingawire element.

Nextappearcomponent elementsdescribingeach of the three components in this compositée first

component is implemented in BPEL, as indicated byrtpéementation.bpel element.The other
two componentsare implementeddza A y 3 { /! Qa WI Qdnd 90 povtsetheSy i Y2 RS
implementation.java elementinstead Even though each componehasthe services and

references shown in the diagramone areexplicitlyspecifiedin thesecomponent elements Instead,
the runtime can discover them and choosgpropriatebindings as described earlier

17

ok
a

After all three components have been defined, the service provided by the csitegtself is specified
using theservice element. This example promotes service A in Compoféntbe a visible service of

this composite¢t KA a& aSNIAOS Aa YSIyid G2 6S 00SaarofsS FTNRY 2dz

defines an explicit Web services bindifgthis example, no URL is specifigtie runtime can supplyone
once the application ideployed Similarly, each of the tweeference elements that end this example

LINEY23GSa I NBFSNBYyOS FNRY 2yS 2F (KS O2YLRariasSqa

the composite itselfThe example assumes that only other components withis domain are
referenced, and stheir bindings needot be specified.

Building modern enterprise applications is unavoidably complex. As more technologies are used to
AYLX SYSy(G odzaAySaa 23203 adzOK Fa .t énjpExit{ LINAYy 33X
increases. A primary goal of S@/npositess to provide a consistent way to assemble these different
technolggies into coherent applicatiorend so makehis diversity more manageable.

USING POLICY

Interactions betweenhe parts of a distributd applicationcan get complicated. One way to make things
more manageable is to let developers ysdiciesto specify theiintentt what they want to happen

then letsomething elsdigure out how to achieve this intent. To support this, Sigfinesa policy
framework

This framework defines two broad categories of policies:

Interaction policies: Modify how a component interacts with other components. Exaniptdude
policies that define requirements for security for reliable message transfeinteraction policies are
typically applied to bindings

Implementation policies: Modify how a component behaves locally. This kind of policy might specify
that a conponent must run inside a transaction, for example (although the initial 1.0 version of the

02 vl

Iy R

{7/ aLlsSoa R2SayQid RSTAYyS (GNIXyalOGAazylf LR2ftAOASaALO®

Like many other things in SCA, policies can be declare8@Dd. configuration fil&or Java SCA
components, paties can also be defined using annotations assigned to interfaces, methods, and other
things. For example, the annotatig@ Confidentiality indicates that communication should be
confidential (that is, encrypted), whil@Authentication indicates that authatication is required.

Yet what exactly do these annotations mean? The answer depends on how each of these policies is
defined within the domain in which this SCA component is runfiinglefine policies, S@#®sitsa policy
administratorrole in each domain. Thisadministrator specifies what a particular policy means in her
domainby specifyindntentsand policy®ts, each of which contains one or more policiEsr example, a
binding for a service can have an associated policySetidaggits interactbn policies while a binding

for a reference can have another policySet describing its interaction policies. When a wire is created
between them, these policySets are matched, and their intersection deterntiirgeset ofpoliciesused

for this communicatio.

{ /! R2S &Ko folicRSskould & describedthin a domairt no one policy language is
mandated and soeach vendor is free to do this in any way it likes. Between domains, however, where
communication is likely to rely on Webrsices, policiesan bespecifiedin a vendofneutral form using

18

{

http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1

WSPolicy And 5§ OF dza S L2t AOAS& NS RSTFAYSR i GKS R2YlLAy 8§
could sometimeénfluencedomain boundaks. As described earlier, a domain will typically consist of a

setof SCAuntimes provided by a single vendand managed by a single grauyet even withirthis

environment, different parts of an organization might require different policies. Supposexémple,

that two departments in the same compadgd S G KS al YS @Sy Raédiferent) / ! LINE RdzO{
security requirements. To address this, the firm might choose to create two separate SCA deaxtins,

with distinct security policies.

PUTTING THE RGIES TOGETHHRLUSTRATING AN SERPLICATION

SCA definea general framework for creating applicatiorihe best way to come to grips with this
generalityis toillustrate a representativeexample The figure below shows hoan application created
using £A might look.

SCA Domain SCA Domain
]
 SCAComposite SCA Composite

JavaServer _ <
=

N4

Java SCA
Componen

Service
DBMS
3 Service 77\ Wire (Domain-defined communication)
, Reference ,~A Web services or other interoperable
communication
"= Promotion /"\ Database access

In this example, thelient is a JavaServeage. ThisSP invokeserviceA, which igprovidedby an SCA

componentii K I parfofia simple composite in son%CA domain. This componentriglemented in

BPELandits service ipromoted tobe visible outsid¢he composite afacti K| (1 Qa S#HdeICBLAE SR A Y
configurationfile.

ThisBPElcomponentcontains eferences to two other services, P andSgwice P iprovidedby a

componentbuiltwith{ / ! Qa WI @I O 2a¥diddofiéhithipD garg dRa@dthEr composite in

another SCA domain. Accordingly, communication with this component relies on Web services (or

LISNKI LJA a2YS 2GKSNJ AYGSNRLISNIrofS LINRBG202f 0 { SNBAOS

19

%)

é
N

http://schemas.xmlsoap.org/ws/2004/09/policy/

part of the same compositessahe BPEL component. Communication between the BPEL component and
the Spring component relies on the domaipecific SCA bindinmodified bywhatever policies have been
specified.

While the Spring componenimplementsservice Qit relies on service Xhik service iprovided by a

F LILIX AOF GA2y ONB Widdws ConmniurkcatimriA FOM@atiog MWEBW & Q& -Yaged { / !
and so communication once again relies on Web servicés@rih reiteratingthat communication with

a nonSCA service looks just like communication with ani$Bad service in another domain. Internal
AYLX SYSy Gl A2y meithér dabe@and soNiBtlypéar a® drdinargvebServiceskinally,

the Spring component accesses a database, as the figure shows. This acdesslocaethroughSDO or
directlywith JPA odDBC oanotherdata access technology.

IMPLEMENTING SCA

The SCA specs say essentially nothing about how this technology should dmémigld. Two open
source implementations exist todayTuscanyand Fabric3 and various vendors are creating their own
implementationsas well2 K A f S riqiii®d the/dBagram below illustrates a common approach to
buildingan SCA runtime.

As shown here, an SCA runtime mightvidea number ofcontainers one for each component
technology it supports. TR8CDL configuratioh A fimpléndentati on element tells the runtime both
what kinds of containers it needs for a particular composite and whermtbthe implementations of the

20

http://www.davidchappell.com/IntroducingWCFv1.2.1.pdf
http://incubator.apache.org/tuscany/
http://fabric3.codehaus.org/

