

INTRODUCING SCA

DAVID CHAPPELL

JULY 2007

COPYRIGHT © 2007 CHAPPELL & ASSOCIATES

2

CONTENTS

SCA Fundamentals .. 3

Components and Composites .. 3

Domains ... 5

Understanding Components .. 7

Services, References, and Properties .. 8

Bindings ... 9

!ƴ 9ȄŀƳǇƭŜΥ {/!Ωǎ WŀǾŀ /ƻƳǇƻƴŜƴǘ aƻŘŜƭ .. 10

Defining Services ... 10

Defining References .. 11

Defining Properties .. 12

Defining Bindings .. 12

Defining Other Aspects of a Component ... 13

Configuring a Component .. 14

Understanding Composites ... 15

Wires and Promotion... 16

Configuring a Composite ... 17

Using Policy ... 18

Putting the Pieces Together: Illustrating an SCA Application ... 19

Implementing SCA ... 20

Conclusion ... 21

Acknowledgements ... 21

About the Author .. 22

3

SCA FUNDAMENTALS

What is an application? One way to think of it is as a set of software components working together. All of

these components might be built using the same technology, or they might use different technologies.

They might run inside the same operating system process, in different processes on the same machine, or

across two or more connected machines. However an application is organized, two things are required: a

way to create components and a mechanism for describing how those components work together.

Service Component Architecture (SCA) defines a general approach to doing both of these things. Now

owned by OASIS, SCA was originally created by a group of vendors, including BEA, IBM, Oracle, SAP, and

others. The SCA specifications define how to create components and how to combine those components

into complete applications. The components in an SCA application might be built with Java or other

languages using SCA-defined programming models, or they might be built using other technologies, such

as the Business Process Execution Language (BPEL) or the Spring Framework. Whatever component

technology is used, SCA defines a common assembly mechanism to specify how those components are

combined into applications.

This overview provides an architectural introduction to SCA. The goal is to provide a big-picture view of

what this technology offers, describe how it works, and show how its various pieces fit together.

COMPONENTS AND COMPOSITES

Every SCA application is built from one or more components. In a simple SCA application, the components

could be Java classes running in a single process, and their interactions might rely on Java interfaces

exposed by those classes. In a slightly more complex case, the Java classes in this application might be

running on different machines, relying on some communication mechanism to interact with one another.

In a still more complex case, the application might contain a few components implemented as Java

classes, others written in C++, and still others defined using BPEL, all spread across a group of machines. In

all of these situations, the same fundamental issues exist: There must be a way to define components and

to describe how they interact. And in an increasingly service-oriented world, those interactions should be

modeled as services.

To do this, SCA provides a generalized definition of a component. It also specifies how those components

can be combined into larger structures called composites. The figure below shows how a simple

composite built from three SCA components might look.

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

4

A composite is a logical construct: Its components can run in a single process on a single computer or be

distributed across multiple processes on multiple computers. A complete application might be

constructed from just one composite, as in the example shown here, or it could combine several different

composites. The components making up each composite might all use the same technology, or they might

be built using different technologiesτeither option is possible.

As the figure shows, an SCA application can be accessed by software from the non-SCA world, such as a

JavaServer Page (JSP), a Web services client, or anything else. Components in an SCA application can also

access data, just like any other application. One option for this is to use Service Data Objects (SDO),

perhaps in concert with a standard Java data access technology such aǎ W5./ ƻǊ WŀǾŀ 99 рΩǎ WŀǾŀ

Persistence API (JPA). An SCA component can also use JDBC, JPA, or something else directlyτthe SCA

ǎǇŜŎƛŦƛŎŀǘƛƻƴǎ ŘƻƴΩǘ mandate any particular choice.

An SCA composite is typically described in an associated configuration file, the name of which ends in

.composite. This file uses an XML-based format called the Service Component Definition Language (SCDL,

ŎƻƳƳƻƴƭȅ ǇǊƻƴƻǳƴŎŜŘ άǎƪƛŘŘƭŜέ) to describe the components this composite contains and specify how

they relate to one another. For the three-component composite shown above, the basic structure of its

SCDL configuration would look like this:

<composite name=" ExampleComposite " ... >

 <component name="Component1">

 ...

 </component>

 <component name="Component2">

 .. .

 </component>

 <component name="Component3">

 ...

 </component>

</composite>

http://www.osoa.org/display/Main/Service+Data+Objects+Specifications

5

Components and composites are the fundamental elements of every SCA application. Both are contained

within a larger construct called a domain, however, and so understanding SCA requires understanding

domains. This fundamental idea is described next.

DOMAINS

An implicit ŀǎǎǳƳǇǘƛƻƴ ƻŦ {/!Ωǎ ŎǊŜŀǘƻǊǎ ǿŀǎ ǘƘŀǘ ŀ ƎƛǾŜƴ ŜƴǾƛǊƻƴƳŜƴǘ would install a group of SCA

products, commonly known as runtimes, from a single vendor. For example, suppose a division of a large

firm chooses a particular company as its SCA vendor. This division is likely to install their chosen ǾŜƴŘƻǊΩǎ

SCA runtime on a number of machinesΦ ¢Ƙƛǎ ƛǎƴΩǘ ŀƴ ǳƴǊŜŀǎƻƴŀōƭŜ ŜȄǇŜŎǘŀǘƛƻƴΣ ŀǎ ƛǘ ƳƛǊǊƻǊǎ Ƙƻǿ

organizations have typically purchased and installed J2EE products. These SCA runtimes will likely be

managed by the same group of people, and this set of systemsτǿƛǘƘ ŀ ŎƻƳƳƻƴ ǾŜƴŘƻǊΩǎ runtime

technology and common managementτprovides the primary example of a domain.

Domains are an important concept in SCA. To see why, realize that even though SCA allows creating

ŘƛǎǘǊƛōǳǘŜŘ ŀǇǇƭƛŎŀǘƛƻƴǎΣ ƛǘ ŘƻŜǎƴΩǘ Ŧǳƭƭȅ ŘŜŦƛƴŜ Ƙƻǿ ŎƻƳǇƻƴŜƴǘǎ ƻƴ ŘƛŦŦŜǊŜƴǘ ƳŀŎƘƛƴŜǎ should interact. As

a result, the communication among these components will be implemented differently by different

products. (As described in the section Implementing SCA below, however, an SCA runtime can allow a

third party to create a container that plugs into that runtime to support a particular technology, such as

BPEL.)

A domain can contain one or more composites, each of which has components implemented in one or

more processes running on one or more machines. The figure below shows an example of how this might

look.

6

The domain shown here contains three composites and three computers. One composite, shown in the

upper part of the figure, consists of five components spread across three processes in two different

machines. The other two composites, shown in the lower part of the figure, run all of their components

on a single machine, dividing them into three separate processes. How communication happens between

ǘƘŜǎŜ ŎƻƳǇƻƴŜƴǘǎΣ ǿƘŜǘƘŜǊ ƛǘΩǎ ƛƴǘǊŀ-process, inter-process, or inter-machine, can be defined differently

by each SCA vendor. Whatever choice is made, composites are single-vendor constructsτǘƘŜȅ ŘƻƴΩǘ ǎǇŀƴ

domain boundaries.

It might seem odd for a multi-vendor specification to define a way to create distributed applications, yet

not define how the components in those applications interact. To understand this, realize that the

ǇǊƛƳŀǊȅ Ǝƻŀƭ ƻŦ {/!Ωǎ ŎǊŜŀǘƻǊǎ ǿŀǎ ǘƻ ŀƭƭƻǿ ǇƻǊǘŀōƛƭƛǘȅ ƻŦ ŎƻŘŜ ŀƴŘ ŘŜǾŜƭƻǇŜǊ ǎƪƛƭƭǎ ŀŎǊƻǎǎ ŘƛŦŦŜǊŜƴǘ {/!

implementations. While creating composites that span domainsτand thus vendor boundariesτmight

ƻƴŜ Řŀȅ ōŜ ǇƻǎǎƛōƭŜΣ ǘƘƛǎ ǿŀǎƴΩt a goal for the first version of SCA. Also, limiting composites to a single

domain allows useful optimizations. An SCA ŘŜǾŜƭƻǇŜǊΩǎ ƭƛŦŜ is significantly simpler inside a domain, for

example, since the complexities inherent in configuring multi-vendor applications can be avoided.

¸Ŝǘ ŘƻƴΩǘ ōŜ ŎƻƴŦǳǎŜŘΦ Even though an SCA composite runs in a single-vendor environment, it can still

communicate with applications outside its own domain. To do this, an SCA component can make itself

accessible using an interoperable protocol such as Web services. The figure below shows how this looks.

7

This example shows two SCA domains, ŜŀŎƘ ǿƛǘƘ ǘǿƻ ŎƻƳǇǳǘŜǊǎΦ hƴŜ ŘƻƳŀƛƴ ǳǎŜǎ ǾŜƴŘƻǊ ·Ωǎ {/!

runtime, while the other uses ǾŜƴŘƻǊ ¸Ωǎ {/! runtime. All of the communication between components

and composites within each domain is done in a vendor-specific wayτ{/! ŘƻŜǎƴΩǘ ƳŀƴŘŀǘŜ Ƙƻǿ ǘƘƛǎ

interaction should happen. To communicate between domains, however, or with non-SCA applications, a

component will typically allow access via Web services or some other interoperable mechanism. In fact,

an SCA application communicating with another SCA application in a different domain sees that

application just like a non-{/! ŀǇǇƭƛŎŀǘƛƻƴΤ ƛǘǎ ǳǎŜ ƻŦ {/! ƛǎƴΩǘ ǾƛǎƛōƭŜ ƻǳǘǎƛŘŜ ƛǘǎ ŘƻƳŀƛƴΦ

UNDERSTANDING COMPONENTS

Components are the atoms from which an SCA application is created. Like atoms, SCA components

behave in consistent ways, and they can be assembled into different configurations. Understanding SCA

starts with understanding these fundamental application building blocks.

In the parlance of SCA, a component is an instance of an implementation that has been appropriately

ŎƻƴŦƛƎǳǊŜŘΦ ¢ƘŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛǎ ǘƘŜ ŎƻŘŜ ǘƘŀǘ ŀŎǘǳŀƭƭȅ ǇǊƻǾƛŘŜǎ ǘƘŜ ŎƻƳǇƻƴŜƴǘΩǎ ŦǳƴŎǘƛƻƴǎΣ ǎǳŎƘ ŀǎ ŀ

Java class or a BPEL process. The configuration, expressed in SCDL, defines how that component interacts

with the outside world. In theory, an SCA component could be implemented using pretty much any

technology. Yet whatever technology is used, every component relies on a common set of abstractions,

including services, references, properties, and bindings, to specify its interactions with the world outside

itself. This section describes each of these.

8

SERVICES, REFERENCES, AND PROPERTIES

Looked at from the outside, an SCA component is a simple thing. Whatever technology is used to create it,

every component has the same fundamental parts, as shown below.

Each component typically implements some business logic, exposed as one or more services. A service,

represented by a green chevron in the figure, provides some number of operations that can be accessed

ōȅ ǘƘŜ ŎƻƳǇƻƴŜƴǘΩǎ client. How services are described depends on the technolƻƎȅ ǘƘŀǘΩs used to

implement the component. A Java component, for example, might describe its services using ordinary

Java interfaces, while a component implemented in BPEL would likely describe its services using the Web

Services Description Language (WSDL).

Along with providing services to its own clients, a component might also rely on services provided by

other components in its domain or by software outside its domain. To describe this, a component can

indicate the services it relies on using references. Shown as a purple chevron in the figure above, each

reference defines an interface containing operations that this component needs to invoke.

These core ideas of services and references are worth lingering over for a moment. LǘΩǎ ōŜŎƻƳŜ ŎƻƳƳƻƴ

to use services to model what a component provides to its clients. Rather than the distributed object

approach of the 1990s, the slightly less coupled approach of services now appears to be a better choice.

Explicitly defining references has become popular more recently, and it offers several advantages. For one

thing, fƻǊƳŀƭƭȅ ŜȄǇǊŜǎǎƛƴƎ ŀ ŎƻƳǇƻƴŜƴǘΩǎ ŘŜǇŜƴŘŜƴŎƛŜs can help make relationships among chunks of

code clearer to developers, ǎƻƳŜǘƘƛƴƎ ǘƘŀǘΩǎ ŀƭǿŀȅǎ ǿŜƭŎƻƳŜΦ Explicit references also ŀƭƭƻǿ ǿƘŀǘΩǎ

sometimes known as dependency injection. This opaque phrase actually has a simple meaning: Instead of

requiring a developer to write code that locates the service a component depends on, the SCA runtime

can locate that service for her. Less code is good, as is the ability to move components more easily from

one environment to another without needing to change any lookup code they contain.

Along with services and references, a component can also define one or more properties. Each property

contains a value that can be read by that component from the SCDL configuration file when iǘΩs

instantiated. For example, a component might rely on a property to tell it what part of the world ƛǘΩǎ

running in, letting it customize its behavior appropriately.

9

BINDINGS

Services and references let a component communicate with other software. By design, however, they say

nothing about how that communication happens. Specifying this is the job of bindings. The figure below

shows where bindings fit into the SCA picture.

A binding specifies exactly how communication should be done between an SCA component and

something else. Depending oƴ ǿƘŀǘ ƛǘΩǎ ŎƻƳƳǳƴƛŎŀǘƛƴƎ ǿƛǘƘΣ ŀ ŎƻƳǇƻƴŜƴǘ ƳƛƎƘǘ ƻǊ ƳƛƎƘǘ ƴƻǘ ƘŀǾŜ

explicitly specified bindings. As the figure shows, a component that communicates with another

component in the same domain, even one in another process or on another machine, need not have any

explicit bindings specified. Instead, the runtime determines what bindings to use, freeing the developer

from this chore.

To communicate outside its domain, however, whether to a non-SCA application or an SCA application

running in some other domainΣ ŀ ŎƻƳǇƻƴŜƴǘΩǎ ŎǊŜŀǘƻǊ Ƴǳǎǘ ǎǇŜŎƛŦȅ ƻƴŜ ƻǊ ƳƻǊŜ ōƛƴŘƛƴƎǎ ŦƻǊ ǘƘƛǎ

communication. Each binding defines a particular protocol that can be used to communicate with this

service or reference. A single service or reference can have multiple bindings, allowing different remote

software to communicate with it in different ways.

Because bindings separate how a component communicates from what it does, they let the cƻƳǇƻƴŜƴǘΩǎ

business logic be largely divorced from the details of communication. This is a departure from the

approach taken by older technologies, which tended to mix the two. Separating these independent

concerns can make life simpler for application designers and developers.

10

AN EXAMPLE: SC!Ω{ W!±! /hathb9b¢ aODEL

The fundamental abstractions of an SCA component are simple: services, references, properties, and

(sometimes) bindings. !ōǎǘǊŀŎǘƛƻƴǎ ŀǊŜƴΩǘ ŜƴƻǳƎƘΣ ƘƻǿŜǾŜǊΦ ¢ƘŜǊŜ Ƴǳǎǘ ŀƭǎƻ ōŜ ŀ ǿŀȅ to create

components that implement these abstractions.

Some existing technologies already match well with the abstractions of an SCA component. For example,

the Spring Framework provides explicit support for services, references, and properties, and so mapping

ǘƘŜǎŜ ƛƴǘƻ {/!Ωǎ ǎƛƳƛƭŀǊ ŎƻƴŎŜǇǘǎ ƛǎ ǎǘǊŀƛƎƘǘŦƻǊǿŀǊŘΦ Because of this, the specification defining how to

create SCA components using Spring is only a few pages long. Similarly, BPEL also provides some built-in

support for the abstractions of an SCA component. BPELΩǎ concept of partnerLinks, for example, can be

mapped to both services and references. While extensions are required for using properties, {/!Ωǎ

specification for creating components using BPEL is quite short, no more than a dozen pages.

Yet even though BPEL and Spring are viable options for creating SCA components, neither was created

with SCA in mind. Given this, wƘȅ ƴƻǘ ŘŜǎƛƎƴ ŀ ǇǊƻƎǊŀƳƳƛƴƎ ƳƻŘŜƭ ŦǊƻƳ ǘƘŜ ƎǊƻǳƴŘ ǳǇ ǘƘŀǘΩǎ ŜȄǇƭƛŎƛǘƭȅ

intended for building SCA components? ¢Ƙƛǎ ƛǎ ŜȄŀŎǘƭȅ ǿƘŀǘΩǎ ŘƻƴŜ ōȅ {/!Ωǎ Java component model. The

next section describes how SCA components can be created using this new programming model.

.ŜŦƻǊŜ ŘƻƛƴƎ ǘƘƛǎΣ ƛǘΩǎ ǿƻǊǘƘ thinking ŀōƻǳǘ ǿƘȅ {/!Ωǎ ŎǊŜŀǘƻǊǎ ŎƘƻǎŜ ǘƻ ƛƴǾŜƴǘ ȅŜǘ ŀƴƻǘƘŜǊ ƴŜǿ

component model for Java. One important motivation was the need for an explicitly service-oriented

approach. The current Java programming models for business logic, such as Enterprise JavaBeans (EJB),

were defined for an earlier world where ǎŜǊǾƛŎŜǎ ǿŜǊŜƴΩǘ ǾƛŜǿŜŘ ŀǎ ŦǳƴŘŀƳŜƴǘŀƭΦ !ŎŎƻǊŘƛƴƎƭȅΣ none of

the Java EE 5 technologies were designed to ƳŀǘŎƘ {/!Ωǎ ǾƛŜǿ ƻŦ components. Also, because bindings

separate communication details from business logic, an SCA-based Java component model can support

diverse communication styles in a common way. For bƻǘƘ ƻŦ ǘƘŜǎŜ ǊŜŀǎƻƴǎΣ ǳǎƛƴƎ {/!Ωǎ ƴŜǿ ŎƻƳǇƻƴŜƴǘ

model can significantly simplify a Java dŜǾŜƭƻǇŜǊΩǎ ƭƛŦŜΦ

Defining Services

Unlike the older J2EE technologies, SCAΩǎ WŀǾŀ programming model relies on annotations rather than API

calls. This approach makes creating a basic service quite easy. In fact, for a service with local clients,

nothing at all is required: an ordinary Java interface and class will do. A service ǘƘŀǘΩǎ ŀŎŎŜǎǎƛōƭŜ ōȅ remote

clients, however, must indicate this fact by marking an interface with an appropriate annotation, as this

simple example shows:

import org.osoa.sca.annotations.Remotable;

@Remotable

public interface AS

{

 int a dd(int a, int b);

 int s ubtract(int a, int b);

}

public interface MD

{

 int multiply(int a, int b);

 int d i vide(int a, int b);

http://www.osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforBPEL_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf?version=1

11

}

public class Calculator implements AS, MD {

 public int add(int a, int b) {

 return a + b;

 }

 public int subtract(int a, int b) {

 return a - b;

 }

 public int multiply(int a, int b) {

 return a * b;

 }

 public int divide(int a, int b) {

 if (b == 0) {

 throw new IllegalArgumentException();

 } else {

 return a / b;

 }

 }

}

This example begins by importing an annotation definition from a standard SCA package. It then uses this

annotation, @Remotable , to indicate that the service provided by the AS interface can be made

accessible to remote clients. ²ƘƛƭŜ ǘƘŜǊŜΩǎ a bit more that needs to be defined for this component in the

SCDL configuration, as described later, this annotation ƛǎ ŀƭƭ ǘƘŀǘΩǎ ǊŜǉǳƛǊŜŘ ƛƴ ǘƘŜ WŀǾŀ ŎƻŘŜΦ The SCA

runtime does everything required to make the service accessible to remote clients. This simple

component also provides a second service that exposes the operations defined in the MD interface.

Because this service is accessible only by local clients, nothing extra is required, and so this interface has

no annotations.

Both interfaces are implemented by the same class, here given the unoriginal name Calculator .

.ŜŎŀǳǎŜ ǘƘŜȅΩǊŜ defined in an interface marked with @Remotable , the Add and Subtract methods

can be invoked by either local or remote clients. The Multiply and Divide methods, defined in an

interface without the @Remotable annotation, can be called only by clients running in the same process

as an instance of the Calculator class.

Defining References

Services let a component describe what it provides to the world outside its boundaries. References let a

component express what it needs from that world. In {/!Ωǎ Java programming model, references are

specified using the @Reference annotation. For instance, suppose the example calculator just

described depends on a monitoring service to keep track of its usage. A reference to that service might be

defined like this:

@Referenc e

protected MonitorService monitorService;

MonitorService is an interface, and so the component can invoke methods in this interface in the

usual way. To invoke, say, a usageCount method, the component could just call

12

monitorService. usageCount(x) ;

Yet the component never needs to create an instance of a class that implements the MonitorService

interface. Instead, the runtime automatically locates a component that provides this interface, then sets

the value of monitorService to point to that service. Rather than relying on the developer to write

code that finds the service, this responsibility is passed to the runtime. (Although this approach is most

often called ŘŜǇŜƴŘŜƴŎȅ ƛƴƧŜŎǘƛƻƴΣ ƛǘΩǎ ŀƭǎƻ sometimes referred to as inversion of control.)

The details of how a runtime finds an instance of a service that satisfies this reference are domain-

specific; how it happens is left up to the creator of each SCA runtime. Because of this, ŘƻƴΩǘ ŜȄǇŜŎǘ that

references can be automatically linked to services provided by components in another SCA domain.

Within a single-vendor environment, however, ǳǎƛƴƎ ǊŜŦŜǊŜƴŎŜǎ Ŏŀƴ ǎƛƳǇƭƛŦȅ ŀ ŘŜǾŜƭƻǇŜǊΩǎ ƭƛŦŜΦ

Defining Properties

Properties are a simple idea, and so ǳǎƛƴƎ ǘƘŜƳ ƛƴ WŀǾŀ ƛǎ ŀƭǎƻ ǎƛƳǇƭŜΦ IŜǊŜΩǎ ŀƴ ŜȄŀƳǇƭŜΥ

@Property

protect ed String region;

Like references and remote services, properties are identified using an annotation: @Property . This

annotation can be assigned to a field in a Java class or to a setter method, and in either case, it indicates

that a value should be read from the SCDL configuration file of the composite to which this component

belongs. Properties can also be more complexτǘƘŜȅ ƴŜŜŘƴΩǘ ōŜ just single-valued strings or integers or

other simple types. ²ƘŜǘƘŜǊ ǘƘŜȅΩǊŜ ǎƛƳǇƭŜ ƻǊ ŎƻƳǇƭŜȄΣ ƘƻǿŜǾŜǊΣ ǘƘŜ Ǝƻŀƭ ƛǎ ǘƘŜ same: providing a way to

configure a component via values that are read at runtime.

Defining Bindings

As described earlier, bindings determine how a component communicates with the world outside its

domain. Bindings can be assigned to services and to references, and each one specifies a particular

protocol. To illustrate why bindings are useful, think of how applications use different protocols in Java

EE5 and its J2EE predecessors. As shown below, each protocol is provided by a distinct technology, so

each one has its own application programming interface. Using SOAP over HTTP, for example, typically

means building on JAX-WS (or JAX-RPC in J2EE 1.4), while using a queued messaging protocol requires the

Java Message Service (JMS). This forces developers to learn different APIs, perhaps with entirely different

programming models, to use different protocols. It also mixes business logic with communication code,

ŦǳǊǘƘŜǊ ŎƻƳǇƭƛŎŀǘƛƴƎ ŀ ŘŜǾŜƭƻǇŜǊΩǎ ƭƛŦŜΦ

13

SCA takes a simpler approach. Rather than wrapping different protocols into distinct technologies with

different APIs, SCA allows each remotable service and each reference to specify the protocols it supports

using bindings. The programming model seen by an application remains the same regardless of which

protocol is used, as the figure below illustrates.

To be accessible via SOAP over HTTP, for example, an SCA service uses the Web Services binding, while

access via a queued messaging protocol uses the JMS binding. Similarly, the EJB session bean binding

allows access to session beans using the Internet Inter-ORB Protocol (IIOP). Every SCA runtime also

provides an SCA binding. The protocol this ōƛƴŘƛƴƎ ǳǎŜǎ ƛǎƴΩǘ ǎǇŜŎified, however. Instead, the SCA binding

is only used when a service and its client are both running in the same domain. Since every vendor wants

ŀǇǇƭƛŎŀǘƛƻƴǎ ōǳƛƭǘ ƻƴ ƛǘǎ ǇǊƻŘǳŎǘǎ ǘƻ ǇŜǊŦƻǊƳ ŀǎ ǿŜƭƭ ŀǎ ǇƻǎǎƛōƭŜΣ ƛǘΩǎ ǎŀŦŜ ǘƻ ŀǎǎǳƳŜ ǘƘŀǘ ǘƘƛǎ ōƛƴŘƛƴƎ ǿƛƭƭ

most often use a binary protocol. ¢Ƙƛǎ ƛǎƴΩǘ ǊŜǉǳƛǊŜŘΣ ƘƻǿŜǾŜǊΤ ŀƴ {/! runtime is free to choose different

protocols in different situations, all of which fall under the umbrella of the SCA binding.

Version 1.0 of the SCA Java component model defines no way for a developer to specify a binding directly

in Java. Instead, the bindings a service or reference relies on are either chosen by the runtime, for intra-

domain communicationΣ ƻǊ ǎŜǘ ŜȄǇƭƛŎƛǘƭȅ ƛƴ ŀ ŎƻƳǇƻƴŜƴǘΩǎ SCDL configuration ŦƛƭŜΦ IŜǊŜΩǎ ŀƴ ŜȄŀƳǇƭŜ ƻŦ

how a binding for ŀ ŎƻƳǇƻƴŜƴǘΩs service might be specified:

<binding.ws uri=" http://www.qwickbank.com/services/serviceA "/>

This example binding element specifies two things: what protocol the binding uses and where the

service can be accessed using this protocol. The .ws in the elementΩǎ ƴŀƳŜ ƛƴŘƛŎŀǘŜǎ the first of these,

specifying the Web Services binding. The ŜƭŜƳŜƴǘΩǎ uri attribute indicates the second, specifying the URL

at which the service can be found. όLǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜτand much more likelyτfor a Web services binding

to use a relative URL rather than the absolute form shown here.) Other bindings can be specified in a

similar way. The binding.jms element specifies the JMS binding, for example, while binding. ejb

indicates the EJB session bean binding.

Defining Other Aspects of a Component

Along with the @Remotable attribute shown earlier, the SCA Java component model defines a number

of others. Among the most important of these are the following:

http://www.osoa.org/download/attachments/35/SCA_WebServiceBinding_V100.pdf?version=2
http://www.osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf?version=2
http://www.osoa.org/download/attachments/35/SCA_EJBSessionBeanBinding_V100.pdf?version=1

14

 @OneWay, specifying that an operation returns no response and so ŘƻŜǎƴΩǘ block waiting for one.

 @Scope, controlling ǘƘŜ ŎƻƳǇƻƴŜƴǘΩǎ ƭƛŦŜǘƛƳŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ŀ component can be conversational,

which means that it maintains its state between method calls, or stateless, maintaining nothing

between calls.

 @Callback , allowing a callback interface to be defined. This supports two-way communication

between components using what SCA calls bi-directional interfaces.

Not all attributes are usable with all bindings. For instance, the @Scope attribute with the conversational

option can only be used with protocols that can pass session information, such as a SOAP binding using

WS-ReliableMessaging. As with any programming environment, SCA developers must understand their

technology to use it correctly.

CONFIGURING A COMPONENT

²ƘŜǘƘŜǊ ƛǘΩǎ ƛƳǇƭŜƳŜƴǘŜŘ ǳǎƛƴƎ {/!Ωǎ WŀǾŀ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭ ƻǊ ŀƴƻǘƘŜǊ ǘŜŎƘƴƻƭƻƎȅ, every SCA

component relies on information in the SCDL configuration file associated with the composite it belongs

to. As shown earlier, each component is defined using the component element, and components are

contained within a composite element. Exactly what must be specified for a component depends on

ǿƘŜǘƘŜǊ ƛǘΩǎ ŘŜŦƛƴƛƴƎ ŎƻƳƳǳƴƛŎŀǘƛƻƴ ǿƛǘƘ ƻǘƘŜǊ ŎƻƳǇƻƴŜƴǘǎ ƛƴ ǘƘŜ ǎŀƳŜ {/! ŘƻƳŀƛƴ ƻǊ ǿƛǘƘ ǎƻŦǘǿŀǊŜ

outside its domain. In the simple (and probably more common) case, where a component interacts only

with other components in the same domain, its component element can be quite straightforward. For

the Calculator class shown earlier, that element might look like this:

<component name="Component1">

 <implemen tation.java class="services.examples.Calculator"/>

 <property name="region">

 Europe

 </property>

</component>

Like all component elements, this one assigns the component a name and provides a wrapper for other

elements. The first of these, implem entation .java , indicates that this component is implemented

using the SCA Java component model, then specifies the Java class in which this implementation can be

found. The second element, property , defines a value for the ŎƻƳǇƻƴŜƴǘΩǎ ǇǊƻǇŜǊǘȅΦ Whatever value is

provided is read into the region field in this component when it begins executing. Note that neither

services nor references for this component need be described here. Instead, the runtime can discover

these things by introspectionτǘƘŜǊŜΩǎ ƴƻ requirement to list them explicitly. And because all

communication is happening within the same domain, the runtime can choose which bindings to use,

obviating the need to specify them here.

If the Calculator class is communicating outside its domain, however, things get slightly more

complex. Suppose, for instance, that both its remotable service and its reference can be connected to

software outside this ŎƻƳǇƻƴŜƴǘΩǎ domain. In this case, the component element for the class might look

like this:

<component name= "Component1">

 <implementation.java class="services.examples.Calculator"/>

15

 <service name="A S">

 <binding.ws uri=" http://www.qwickbank.com/services/serviceA "/>

 </service>

 <reference name=" Monitor Service ">

 <binding.ws uri =" http://www .q wickbank.com/services/serviceM " />

 </reference>

 <property name="region">

 Europe

 </property>

</component>

Just as before, the ŎƻƳǇƻƴŜƴǘΩǎ ŘŜǎŎǊƛǇǘƛƻƴ begins with an implementation.java element

indicating what technology was used to implement the component and where this implementation can be

found. It also ends with the prop erty element as before. In between, however, are explicit service

and reference elements for the remotable service and the reference this component defines. Each of

these specifies the Web services binding, complete with a URL. Because the component is communicating

with software outside its domain, the runtime ŎŀƴΩǘ ŎƘƻƻǎŜ ŀ ōƛƴŘƛƴƎΦ LƴǎǘŜŀŘΣ ǘƘŜ ŎƻƳǇƻƴŜƴǘ ŜȄǇƭƛŎƛǘƭȅ

specifies that an interoperable binding should be used. όbƻǘŜ ǘƘŀǘ ǘƘƛǎ ƛǎƴΩǘ ǊŜǉǳƛǊŜŘ ŦƻǊ ǘƘŜ ŎƻƳǇƻƴŜƴǘΩǎ

ƭƻŎŀƭ ǎŜǊǾƛŎŜΣ ǎƛƴŎŜ ƛǘΩǎ ƻƴƭȅ ŀŎŎŜǎǎƛōƭŜ ŦǊƻƳ ǿƛǘƘƛƴ ǘƘŜ ǎŀƳŜ ŘƻƳŀƛƴΦύ LǘΩǎ ǳǇ ǘƻ the SCA runtime to

generate WSDL interfaces from the Java interfaces, fix up the service to be callable via SOAP, and do

everything else required to let this component communicate via Web services.

As described here, the Calculator component is implemented usƛƴƎ {/!Ωǎ WŀǾŀ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭΦ LŦ ǎƻƳŜ

other technology were used to implement it, however, its definition in the SCDL configuration ǿƻǳƭŘƴΩǘ

change much. If this component were implemented in BPEL, for example, and communicated only with

other components in its own domain, its component element might now look like this:

<component name="Component1">

 <implementation. bpel process =" ExampleProcess "/>

 <property name="region">

 Europe

 </property>

</component>

Rather than the implementation.java element shown earlier, a BPEL component uses the

implementation.bpel element, naming a BPEL process rather than a Java class. Nothing else need

change. While the runtime Ƴǳǎǘ ōŜƘŀǾŜ ŘƛŦŦŜǊŜƴǘƭȅ ǘƻ ŜȄŜŎǳǘŜ ǘƘƛǎ .t9[ŎƻƳǇƻƴŜƴǘΣ {/!Ωǎ ŀōǎǘǊŀŎǘ

component definition remains the same, and so only small changes are required in the SCDL configuration

file.

Similarly, a component built using the Spring Framework would specify the implementation.spring

element, while one built ǳǎƛƴƎ {/!Ωǎ C++ component model would use i mplementation.cpp . An

entire composite can also act as a component in another composite, an option that relies on the

implementation.composite element. This approach allows composites to be nested, regardless of

the technologies from which their components are built.

UNDERSTANDING COMPOSITES

If components are the atoms of SCA, then composites are the molecules. Composites group components

into useful combinations, which can themselves be further combined. This building-block approach to

http://www.osoa.org/download/attachments/35/SCA_ClientAndImplementationModel_Cpp-V100.pdf?version=2

16

creating applications has some obvious pluses. For example, providing a well-defined set of abstractions

for components can help people who create applications think more clearly about how those applications

should be designed. Keeping these abstractions consistent across different technologies also makes

building applications using different languages and runtimes easier. Recall, too, that the components in a

composite might run in the same process, in different processes on a single machine, or in different

processes on different machƛƴŜǎΦ Lƴ ŀƭƭ ƻŦ ǘƘŜǎŜ ŎŀǎŜǎΣ ƛǘΩǎ useful to have some way to deploy the entire

application as a unit. And since components provide discrete, well-defined services, a graphical tool could

allow assembling or re-assembling various components as needed to address a particular problem. Doing

this can ƳŀƪŜ ŀ ŘŜǾŜƭƻǇŜǊΩǎ ƭƛŦŜ easier, and it might even allow less technically adept people to create

applications by assembling existing components.

Achieving these goals requires defining how components relate to one another within a composite,

relationships described in {/!Ωǎ assembly model specification. This section takes a closer look at how an

SCA composite is assembled.

WIRES AND PROMOTION

!ǎ ǳǎǳŀƭΣ ƛǘΩǎ ǳǎŜŦǳƭ ǘƻ ǎǘŀǊǘ ǿƛǘƘ ŀ picture. The figure below shows three components, each with some

combination of services and resources. All three are part of the same composite.

As the figure shows, a reference in one component is connected to a service in another component using

a wire. A wire is an abstract representation of the relationship between a reference and some service that

meets the needs of that reference. Exactly what kind of communication a wire provides can varyτit

depends on the specific runtime ǘƘŀǘΩǎ ǳǎŜŘΣ ǿƘŀǘ ōƛƴŘƛƴƎǎ ŀǊŜ ǎǇŜŎƛŦƛŜŘ όƛŦ ŀƴȅύΣ ŀƴŘ ƻǘƘŜǊ ǘƘƛƴƎǎΦ And

since the components in a composite might run entirely within a single process, across processes on a

single machine, or be spread across processes on different machines, wires can represent relationships in

all of these cases.

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1

17

Just as components expose services, a composite can also expose one or more services. These services are

actually implemented by components within the composite. To make them visible to the outside world,

ǘƘŜ ŎƻƳǇƻǎƛǘŜΩǎ ŎǊŜŀǘƻǊ can promote those services. In this example, service A implemented by

Component 1 is promoted to be a service provided by the composite itself. Similarly, zero, one, or more

references defined by components can be promoted to be visible outside the composite. Here, both

references T and U are promoted to the composite level.

CONFIGURING A COMPOSITE

All of the relationships in a composite are expressed in the SCDL configuration ŦƛƭŜΦ IŜǊŜΩǎ ŀ ǎlightly

simplified example of how this file might look for the scenario shown above:

<composite name="ThreeComponents" autowire="true" ...>

 <component name="Component1">

 <implementation. bpel process =" Process1 "/>

 </component>

 <component name ="Component2">

 <implementation.java class="services.examples. class2 "/>

 </component>

 <component name="Component3">

 <implementation.java class="services.examples. class3 "/>

 </component>

 <service name=ñAò promote=ñComponent1/Aò

 <binding.ws/>

 <service />

 <reference name=" Tò promote=ñComponent2 / Tò/>

 <reference name="Uò promote=ñComponent3/Uò/>

</composite>

Like all SCDL configurations, this one wraps its contents in a composite element. In the example shown

here, this eleƳŜƴǘΩǎ autowire attribute is set to true. This indicates that the SCA runtime should

automatically attempt to connect the services and references defined by the components in this

composite. To do this, the runtime looks for matches between the references and services exposed by

ǘƘƛǎ ŎƻƳǇƻǎƛǘŜΩǎ ŎƻƳǇƻƴŜƴǘǎΦ ¢ƻ ōŜ ŀ ƳŀǘŎƘΣ ŀ ǎŜǊǾƛŎŜ Ƴǳǎǘ ǇǊƻǾƛŘŜ ǘƘŜ interface a reference requires,

allow using a compatible bindingΣ ŀƴŘ ǇŜǊƘŀǇǎ ƳƻǊŜΦ !ƭǘƘƻǳƎƘ ƛǘΩǎ ƴƻǘ ǎƘƻǿƴ ƘŜǊŜΣ ƛǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ

define explicit wires between components using a wire element.

Next appear component elements describing each of the three components in this composite. The first

component is implemented in BPEL, as indicated by the implementation.bpel element. The other

two components are implemented ǳǎƛƴƎ {/!Ωǎ WŀǾŀ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭ, and so both use the

implementation.java element instead. Even though each component has the services and

references shown in the diagram, none are explicitly specified in these component elements. Instead,

the runtime can discover them and choose appropriate bindings, as described earlier.

18

After all three components have been defined, the service provided by the composite itself is specified

using the service element. This example promotes service A in Component 1 to be a visible service of

this composite. ¢Ƙƛǎ ǎŜǊǾƛŎŜ ƛǎ ƳŜŀƴǘ ǘƻ ōŜ ŀŎŎŜǎǎƛōƭŜ ŦǊƻƳ ƻǳǘǎƛŘŜ ǘƘŜ ŎƻƳǇƻǎƛǘŜΩǎ ŘƻƳŀƛƴΣ ŀƴŘ ǎƻ ƛǘ

defines an explicit Web services binding. In this example, no URL is specifiedτthe runtime can supply one

once the application is deployed. Similarly, each of the two reference elements that end this example

ǇǊƻƳƻǘŜǎ ŀ ǊŜŦŜǊŜƴŎŜ ŦǊƻƳ ƻƴŜ ƻŦ ǘƘŜ ŎƻƳǇƻǎƛǘŜΩǎ ŎƻƳǇƻƴŜƴǘǎΣ ƳŀƪƛƴƎ ǘƘƻǎŜ ǊŜŦŜǊŜƴŎŜǎ ǾƛǎƛōƭŜ ƻǳǘǎƛŘŜ

the composite itself. The example assumes that only other components within this domain are

referenced, and so their bindings need not be specified.

Building modern enterprise applications is unavoidably complex. As more technologies are used to

ƛƳǇƭŜƳŜƴǘ ōǳǎƛƴŜǎǎ ƭƻƎƛŎΣ ǎǳŎƘ ŀǎ .t9[Σ {ǇǊƛƴƎΣ ŀƴŘ {/!Ωǎ WŀǾŀ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭΣ ǘƘŀǘ Ŏomplexity

increases. A primary goal of SCA composites is to provide a consistent way to assemble these different

technologies into coherent applications and so make this diversity more manageable.

USING POLICY

Interactions between the parts of a distributed application can get complicated. One way to make things

more manageable is to let developers use policies to specify their intentτwhat they want to happenτ

then let something else figure out how to achieve this intent. To support this, SCA defines a policy

framework.

This framework defines two broad categories of policies:

 Interaction policies: Modify how a component interacts with other components. Examples include

policies that define requirements for security or for reliable message transfer. Interaction policies are

typically applied to bindings.

 Implementation policies: Modify how a component behaves locally. This kind of policy might specify

that a component must run inside a transaction, for example (although the initial 1.0 version of the

{/! ǎǇŜŎǎ ŘƻŜǎƴΩǘ ŘŜŦƛƴŜ ǘǊŀƴǎŀŎǘƛƻƴŀƭ ǇƻƭƛŎƛŜǎύΦ

Like many other things in SCA, policies can be declared in a SCDL configuration file. For Java SCA

components, policies can also be defined using annotations assigned to interfaces, methods, and other

things. For example, the annotation @Confidentiality indicates that communication should be

confidential (that is, encrypted), while @Authentication indicates that authentication is required.

Yet what exactly do these annotations mean? The answer depends on how each of these policies is

defined within the domain in which this SCA component is running. To define policies, SCA posits a policy

administrator role in each domain. This administrator specifies what a particular policy means in her

domain by specifying intents and policySets, each of which contains one or more policies. For example, a

binding for a service can have an associated policySet describing its interaction policies, while a binding

for a reference can have another policySet describing its interaction policies. When a wire is created

between them, these policySets are matched, and their intersection determines the set of policies used

for this communication.

{/! ŘƻŜǎƴΩǘ ŘŜŦƛƴŜ how policies should be described within a domainτno one policy language is

mandatedτand so each vendor is free to do this in any way it likes. Between domains, however, where

communication is likely to rely on Web services, policies can be specified in a vendor-neutral form using

http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1

19

WS-Policy. And bŜŎŀǳǎŜ ǇƻƭƛŎƛŜǎ ŀǊŜ ŘŜŦƛƴŜŘ ŀǘ ǘƘŜ ŘƻƳŀƛƴ ƭŜǾŜƭΣ ƛǘΩǎ ǇƻǎǎƛōƭŜ ǘƘŀǘ ǇƻƭƛŎȅ ǊŜǉǳƛǊŜƳŜƴǘǎ

could sometimes influence domain boundaries. As described earlier, a domain will typically consist of a

set of SCA runtimes provided by a single vendor and managed by a single group. Yet even within this

environment, different parts of an organization might require different policies. Suppose, for example,

that two departments in the same company ǳǎŜ ǘƘŜ ǎŀƳŜ ǾŜƴŘƻǊΩǎ {/! ǇǊƻŘǳŎǘ ōǳǘ have different

security requirements. To address this, the firm might choose to create two separate SCA domains, each

with distinct security policies.

PUTTING THE PIECES TOGETHER: ILLUSTRATING AN SCA APPLICATION

SCA defines a general framework for creating applications. The best way to come to grips with this

generality is to illustrate a representative example. The figure below shows how an application created

using SCA might look.

In this example, the client is a JavaServer Page. This JSP invokes service A, which is provided by an SCA

component ǘƘŀǘΩǎ part of a simple composite in some SCA domain. This component is implemented in

BPEL, and its service is promoted to be visible outside the composite, a fact ǘƘŀǘΩǎ ŜȄǇǊŜǎǎŜŘ ƛƴ the SCDL

configuration file.

This BPEL component contains references to two other services, P and Q. Service P is provided by a

component built with {/!Ωǎ WŀǾŀ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭΣ a component thatΩǎ part of another composite in

another SCA domain. Accordingly, communication with this component relies on Web services (or

ǇŜǊƘŀǇǎ ǎƻƳŜ ƻǘƘŜǊ ƛƴǘŜǊƻǇŜǊŀōƭŜ ǇǊƻǘƻŎƻƭύΦ {ŜǊǾƛŎŜ v ƛǎ ƛƳǇƭŜƳŜƴǘŜŘ ōȅ ŀ {ǇǊƛƴƎ {/! ŎƻƳǇƻƴŜƴǘ ǘƘŀǘΩǎ

http://schemas.xmlsoap.org/ws/2004/09/policy/

20

part of the same composite as the BPEL component. Communication between the BPEL component and

the Spring component relies on the domain-specific SCA binding, modified by whatever policies have been

specified.

While the Spring component implements service Q, it relies on service X. This service is provided by an

ŀǇǇƭƛŎŀǘƛƻƴ ŎǊŜŀǘŜŘ ǿƛǘƘ aƛŎǊƻǎƻŦǘΩǎ Windows Communication Foundation (WCF)τƛǘΩǎ ƴƻǘ {/!-basedτ

and so communication once again relies on Web services. LǘΩǎ worth reiterating that communication with

a non-SCA service looks just like communication with an SCA-based service in another domain. Internal

ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ŘŜǘŀƛƭǎ ŀǊŜƴΩǘ ǾƛǎƛōƭŜ in either case, and so both appear as ordinary Web services. Finally,

the Spring component accesses a database, as the figure shows. This access can be done through SDO or

directly with JPA or JDBC or another data access technology.

IMPLEMENTING SCA

The SCA specs say essentially nothing about how this technology should be implemented. Two open

source implementations exist todayτTuscany and Fabric3τand various vendors are creating their own

implementations as well. ²ƘƛƭŜ ƛǘΩǎ ƴƻǘ required, the diagram below illustrates a common approach to

building an SCA runtime.

As shown here, an SCA runtime might provide a number of containers, one for each component

technology it supports. The SCDL configuration ŦƛƭŜΩǎ implementati on element tells the runtime both

what kinds of containers it needs for a particular composite and where to find the implementations of the

http://www.davidchappell.com/IntroducingWCFv1.2.1.pdf
http://incubator.apache.org/tuscany/
http://fabric3.codehaus.org/

